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This article explores the theoretical implications of developing multidimensional social 

networks that include nonhuman technological elements. Using ideas from actor-

network theory and sociomateriality, we develop a typology for multidimensional 

networks that includes multiple kinds of nodes and multiple kinds of relations. This 

typology includes traditional types of nodes, like people, and traditional types of 

relations, like “shares information with,” along with types of nodes that are technological 

artifacts, like databases, and types of nonhuman relations, like embodiment. In this 

way, technology is moved inside the social network and becomes an inherent part of it. 

An illustrative case shows how the inclusion of nonhuman artifacts and relations in the 

networks of an automobile design firm significantly changes our understanding of the 

emergent dynamics in this sociomaterial network.  These results are extended by an 
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exploration of how to develop multidimensional, multitheoretical, and multilevel models 

that include technological artifacts and relations. 

 

In the 1950s, scholars began to explore the various ways that new technologies (e.g., hardware, 

software, routines, policies, etc.) enable and constrain people’s communicative behavior in formal and 

informal organizational systems (e.g., Coleman, Katz, & Menzel, 1957; Leavitt & Whistler, 1958; March & 

Simon, 1958; Thompson & Bates, 1957; Woodward, 1958). By the late 20th century, researchers had 

accrued a good deal of empirical evidence to support hypotheses made in the 1950s and 1960s about the 

various ways that new technologies would alter social dynamics. Within formal organizational settings, for 

example, research by Barley (1990), Burkhardt and Brass (1990), Contractor and Seibold (1993), and 

others demonstrated the subtle, nuanced ways through which newly implemented computer-based 

technologies alter the flow of communication within networks and, hence, allow people to reconfigure 

formal organizational structures, decision making, and power relationships. Empirical evidence also 

mounted in support of the notion that new computer-based technologies could bring change to more 

informal communication networks (for a comprehensive review, see DiMaggio, Hargittai, Neuman, & 

Robinson, 2001). At the same time, scholars became interested in reversing the causal arrow, asking 

whether established networks could influence the effects of newly implemented technologies. A number of 

researchers showed, convincingly, that network dynamics could, indeed, shape what people thought about 

a new technology, as well as whether and how they would use it (Fulk, 1993; Karahanna, Straub, & 

Chervany, 1999; Kraut, Rice, Cool, & Fish, 1998; Rice & Aydin, 1991). The recognition that the causal 

arrows could plausibly go in either direction was embraced by advocates of a structurational perspective, 

who argued that technologies can simultaneously shape and be shaped by the social structures into which 

they are introduced (DeSanctis & Poole, 1994; Orlikowski, 2000).  

 

All three sets of studies share the ontological position that technologies exist separately from 

people’s social networks. In other words, they treat either technologies or networks as exogenous forces 

that impinge upon the functioning of the other. Such attempts to isolate causality make good sense in 

situations where people use a handful of distinct technologies, and where their interactions with 

technology are very different than their interactions with people. Indeed, in many of the contexts studied 

by the authors cited above, individuals interact with technology (such as telephone, fax, email) to reach 

other people, rather than interact with the technology in lieu of people. In other words, the people in 

these contexts are more likely to use technologies in ways that are distinct from how they “use” other 

people (Hollingshead & Contractor, 2002). Questions concerning the nature of causality seem less 

appropriate, however, when groups of people use multiple technologies simultaneously and switch the 

technologies they use frequently. In such situations, identifying what technology “causes” a particular 

network change becomes less intellectually interesting, because a given technology is often used 

interdependently with a wide swath of other pervasive and embedded technologies (Bailey, Leonardi, & 

Chong, 2010). Similarly, as technologies begin to store greater amounts of information that were once 

only held in the heads of people, individuals begin to “use” technologies in much the same ways that they 

“use” coworkers and friends (Su, Huang, & Contractor, 2010). These technologies are emerging as “social 

prosthetic systems” (Kosslyn, 2011, p. 182). 
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Thus, ubiquitous computing, both inside and outside formal organizations, is making it 

increasingly difficult to separate people’s interactions with other people from people’s interactions with 

technologies. Consequently, it may make more sense to begin treating technologies as endogenous to 

social networks, rather than as exogenous to them. In other words, instead of asking how technologies 

might change social networks (or vice versa, or both), the more appropriate question is, “What happens 

when a new technology becomes a part of a social network?” By “making technologies a part of a social 

network,” we mean that the technologies are treated as nodes in the network, which are linked via specific 

relations to other nodes in the network. This move implies that researchers can no longer make an 

analytic distinction between technologies (or artifacts more generally) and people. They must begin to 

recognize that networks can be comprised of people and technologies, and that both types of nodes may, 

on occasion, play equivalent roles. Recently, proponents of a sociomaterial approach to studies of 

technology and communication have begun to provide us with the ontological foundations and theoretical 

language with which to make this conceptual shift (e.g., Leonardi & Barley, 2008; Orlikowski, 2007; 

Orlikowski & Scott, 2008; Pentland & Feldman, 2007).  

 

At an ontological level, a sociomaterial approach to technology and communication suggests that 

communicative behaviors and technologies are indistinguishable phenomena (Baptista, 2009; Orlikowski & 

Scott, 2008). As Leonardi suggests: “technologies are as much social as they are material (in the sense 

that material features were chosen and retained through social interaction) and [communication patterns] 

are as much material as they are social (in the sense that social interactions are enabled and constrained 

by material properties)” (2009a, p. 299). Orlikowski argues that this ontological stance compels 

researchers to view the relationship between coordinated human action (the social) and the features of 

technologies (the material) that people use as central to the organizing process. In other words, a 

sociomaterial approach: 

 

. . . asserts that materiality is integral to organizing, positing that the social and the 

material are constitutively entangled in everyday life. A position of constitutive 

entanglement does not privilege either humans or technology (in one-way interactions), 

nor does it link them through a form of mutual reciprocation (in two-way interactions). 

Instead, the social and the material are considered to be inextricably related—there is 

no social that is not also material, and no material that is not also social. (2007, p. 

1,437) 

 

This sociomaterial approach draws heavily on the work of actor-network theory (Callon, 1986; Latour, 

1987; Law, 1987) to stake this ontological claim of symmetry between human action and the actions of 

technology. Actor-network theory assumes the communicative actions that most social scientists would 

call “social” involve both people and technologies, and that the material features of a technology are 

developed and used in a system of social relationships. By abandoning the attempt to distinguish that 

which is social from that which is material, actor-network theorists consider the actions of humans and 

non-humans as part of a single network that is, itself, an actor, an “actor-network.” Actor-network theory 

uses the term “actants” to denote human and non-human actors, and assumes that actants in a network 

take the shape that they do by virtue of their relations with one another. It assumes that nothing lies 

outside the network of relations, and, consequently, that there is no difference in the ability of technology, 
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humans, animals, or other non-humans to act (Latour, 2005).  

 

Although the sociomaterial approach is appealing at the ontological level, it is somewhat 

problematic at the empirical level, because technologies and communication patterns are relatively easy to 

distinguish (Edmondson, Bohmer, & Pisano, 2001; Pentland & Feldman, 2008). For this reason, Leonardi 

argues that “our current understanding of the nature of the relationship between routines and 

technologies evinces dissonance between our ontological specifications and our empirical observations” 

(2011, p. 164). In other words, although technologies and communicative behaviors can be seen, 

conceptually, as “constitutively entangled,” there are important differences between them in practice. For 

example, although a person might decide to retrieve information from his or her friend on one day, and 

from a technology (like a database) on the next day, it is unlikely that he or she would ever consider the 

technology his or her friend. Thus, although the sociomaterial approach provides an important way of 

thinking about technologies as parts of networks (as opposed to entities that exist independent of 

networks), this approach does not provide much guidance in specifying how researchers might depict 

sociomaterial relations empirically in ways that recognize these important differences. 

 

In this article, we argue that making technologies endogenous to networks will offer researchers 

the ability to begin thinking about networks composed of different types of nodes (e.g., persons, 

databases, books, etc.), and about where the relationships among these varying nodes also differ (e.g., 

one might have a friendship relationship with another person, but an information-retrieval relationship 

with a database). We call these “multidimensional networks.” This approach stands in contrast to the more 

traditional approaches, outlined above, which treat networks and technologies as objects that exist 

separately. Although we focus our attention on computer-based artifacts in this article, one could easily 

substitute the word “non-human” for our use of “technology.” That is, any non-human actor, no matter 

whether it is a policy, a routine, a chemical, or a drug, can be brought, conceptually, inside a social 

network, just like a technology. In so doing, the resultant network ceases to be a simple social network, 

and it should, instead, be considered a multidimensional network. 

 

 The remainder of this article is organized into three parts. First, we develop a general typology 

of multidimensional networks. Second, we illustrate our arguments by applying this typology to analyze a 

case study of the implementation of a new computer-based simulation technology into the work of 

automotive engineers. Though this is not a test of our theory, we show that traditional unidimensional 

network approaches provide a limited—and in some cases, flawed—explanation of the implementation 

process, while multidimensional networks allow us to more fully explain these dynamic network processes. 

Finally, we discuss recent theoretical and methodological developments in the field of network analysis 

that offer considerable promise in advancing a multi-theoretical, multilevel approach to the analysis of 

multidimensional networks at scale. 

 

Conceptualizing Multidimensional Networks 

 

While much has been learned from the large corpus of published research on unidimensional 

networks, there is little doubt that unidimensionality is a significant oversimplification of the rich 

complexity that exists in most social networks. As a general analytic system, network analysis can be 



686 Contractor, Monge & Leonardi International Journal of Communication 5(2011) 

applied to both an amazingly diverse set of objects and a similarly diverse set of relations. However, in 

most instances, any single study typically looks at networks comprised of only one type of node and, at 

most, a handful of relations among these similar objects. Of course, the primary objects of study for social 

networks are people and their social, communicative, and other human relations. But increasingly, even 

the ties among people are created, maintained, and dissolved because of their interactions with nodes in 

the network that are technologies such as Web sites, documents, and tags. Of course, there are multiple 

types of relations that often create complex patterns. Some relations might be appropriate for ties among 

humans, but not for ties among non-humans. Other relations might similarly be appropriate for ties 

among technologies, but not humans. And some relations, such as friendship, might not be appropriate for 

connections between humans and non-human entities. In this section, we explore these types of network 

multidimensionality, examining the inclusion of different types of objects in networks and defining multiple 

types of relations on the multimodal objects.  

 

Unidimensional Networks 

 

 Networks consist of objects that are connected to each other in the world by some type of 

relationship; they also consist of the symbolic representation of those connected objects, such as in maps 

that represent connections among blogs in the blogosphere (Adamic & Glance, 2005; Kelly, 2010). 

Unidimensional networks, sometimes called unimodal, uniplex networks, consist of a single type of object 

or node and a single type of relation. Typically, in social networks, nodes are people, sometimes broken 

down into different kinds of categories, like school children (Goodreau, 2007) or members of various 

corporate boards of directors (Stevenson & Radin, 2009). But it is entirely possible to have nodes other 

than humans and still have social networks. For example, Faust and Skvoretz (2002) compared 42 

networks of four different types of social species: humans, non-human primates, non-primate mammals, 

and birds. It is also quite common to have non-human networks, as with road maps that show the 

connections among cities. These examples illustrate that, while scholars have looked at networks of 

diverse nodes, each of these studies typically look at only one type of node (humans, primates, birds, 

etc.). 

 

 Relations describe connections among objects that specify which objects are linked, and which 

are not. Relations can also be signed to indicate whether they are positive or negative, like amity and 

enmity. They can also be valued, so as to show how much of the relationship exists, as in monthly, 

weekly, or daily communication contact. Relations can also be directional, as in the relation, “gives money 

to,” or they can be non-directional, as in the relation, “is friends with.” There is nothing inherently wrong 

with unidimensional networks. Decades of work in the social sciences has revealed considerable 

information about how they operate (Easley & Kleinberg, 2010; Jackson, 2008; Monge & Contractor, 

2003; Newman, 2010). But they do have a number of limitations. Perhaps most serious is the fact that 

they oversimplify reality. Most communicative and social processes contain multiple types of relations. For 

example, in organizational communication contexts, people are often thought to have relations with others 

about getting work done, about innovation, and about social maintenance (Farace, Monge, & Russell, 

1977). Unidimensional examination of these three networks would require three separate analyses, 

ignoring the relations among them. Consider a simple illustration of a network that might include multiple 

types of nodes and relations. Figure 1 presents a unidimensional network. Suppose that there are two 
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possible kinds of nodes, people and technologies (as shown in the legend), but only one is shown in the 

network, people, making it unimodal. Several possible relations are also shown in the legend, but only one 

is included in the network, friendship, making it uniplex. Also shown in Figure 1 is the adjacency matrix, 

which shows the nodes as row and column labels, and relations as the cell entries indicating the link 

between each pair of nodes. 

 

 

 

 
 

Figure 1. Unidimensional (Unimodel and Uniplex) Network and Adjacency Matrix. 

 

 

 Attributes are characteristics of the nodes. Common attributes in social networks are features like 

gender, race, age, and education. In Figure 1, people’s attributes are shown, which consist of the 

departments to which they belong, represented by orange and blue color codes.  

 

Unimodal Multiplex Networks 

 

 Unimodal multiplex networks contain two or more kinds of relations on a single type of node. For 

example, Lee and Monge (in press) studied two sets of relations among the nongovernmental 

organizations that comprise the field of information and communication technologies for development. The 

two relations that they studied in this one set of organizations were (1) project implementation and (2) 
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knowledge-sharing. In addition to studying the networks defined by the two relations separately, Lee and 

Monge were able to examine how structural patterns in one network influenced structural patterns in the 

other network. A representative finding here was that “organizations with repeated collaboration in 

implementation networks are likely to have ties in knowledge-sharing projects as well.”  

 

 Figure 2 shows a unimodal, multiplex network. Though there are two possible types of objects in 

the legend, this network is unimodal, so it contains only one type of object—in this case, people (it could 

just as easily have been the other mode, technologies). Three possible types of relations are shown in the 

legend, but only two exist in the network, “friendship,” and “contributes information to.” Again, people’s 

attributes, their departments, are shown. 

 

 
 

  Figure 2. Unimodal, Multiplex Network. 
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Multimodal Uniplex Networks 

 

 Multimodal networks contain two or more different kinds of nodes. The simplest are bimodal 

(two-mode) networks. Multimodal uniplex networks contain two or more types of nodes connected by a 

single relationship. Often, two-mode social networks consist of a set of people nodes and a set of event 

nodes, traditionally called affiliation networks because they record which people were affiliated with which 

events. Davis, Gardner, Gardner, and Wallace (1941) described 18 Southern women who belonged to a 

social club and attended one or more of 14 social events during the 1930s. The matrices containing these 

network data can be divided into two one-mode matrices to show (1) the number of times each pair of 

women attended the same events, or (2) the number of women each pair of social events had in common. 

They can also be represented as a bimodal (or bipartite) matrix, where the two types of nodes are 

included into a single matrix with rows being the women and columns being the social events or vice 

versa. Figure 3 shows a multimodal (bimodal) uniplex network. The two types of nodes are people and 

technologies, and the single relation is “contributes information to.”   

 

 
 

Figure 3. Multimodal Uniplex Network. 
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Multidimensional Networks (Multimodal Multiplex) 

 

 Multidimensional networks have both multiple nodes and multiple relations, and thus, they are 

sometimes called multimodal multiplex networks. Scholarly research on multidimensional networks is rare. 

One notable exception is the research on the evolution of the biotechnology industry by Powell, White, 

Koput, and Owen-Smith (2005). Their research examines six different sets of nodes (heximodal) and four 

different relations (quadriplex). The six types of nodes are dedicated biotechnology firms (DBFs), 

universities and other research and development firms, government regulators, pharmaceutical 

companies, venture capitalists, and others. The relations were research and development, finance, 

commercialization, and licensing.  

 

 Figure 4 shows a multidimensional network with two different types of nodes, people and 

technologies, and four different types of relations: (1) contributes information to, (2) retrieves information 

from, (3) friendship, and (4) compatibility. Only two of these four relationships (contributes information to 

and retrieves information from) are shown in the Figure. This is because the links in these networks only 

exist between different types of nodes; that is, between people and technologies, but not among people or 

technologies. Since the figure does not have relationships only among the people, no friendship ties are 

shown. Likewise, because the figure does not show relationships among technologies, there is no way to 

show a compatibility relationship between a hardware product and a piece of software.  

 

 
Figure 4. Multidimensional Network: Two (or more) Relations 
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Between Two (or more) Types of Nodes (Objects). 

 

The absence of relations among the people or among the technologies is not unlike the bimodal 

example of Southern women attending social events described previously in the discussion of bimodal 

uniplex networks. In that case, a relation existed when a woman attended a certain social event. We 

discussed how these bimodal relations could be used to infer either ties among women (how many events 

they attended in common), or ties among events (how many women attended pairs of events). However, 

that study did not directly measure relations among women, such as friendship, or among events, such as 

a thematic connection. The reason for this omission is not necessarily because the authors did not 

consider those relations to be important. Instead, their omission reflects a limitation of traditional network 

analytic methods that were used to study bimodal networks. These methods typically required that 

relations only exist between different types of nodes (or modes) and not include relations among similar 

types of nodes. But most empirical contexts involving multidimensional networks would greatly benefit 

from the ability to depict ties among the same types of nodes. Figure 5 depicts such a multidimensional 

network. This figure includes the friendship relation among people and the compatibility relation among 

technologies. Recent methodological developments (Robins & Wang, 2011) address the limitations 

indicated above that had restricted analysis only to relations between different types of nodes and 

highlight the potential for simultaneously analyzing networks where relations can also exist among nodes 

of the same type.  

 
 

Figure 5. Multidimensional Network: Two (or more) Relations/ 

Two (or more) Types of Nodes. 
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Multidimensional networks: Micro and macro variations. Historically, communication and other 

social networks have been examined from a static, single-point-in-time, cross-sectional perspective. In 

fact, each type of network described in this typology can be studied from a dynamic perspective (Breiger, 

Carley, & Pattison, 2003). Burt’s (2000, 2002) research on tie decay is one of the earliest examples, 

though it was done in the context of unidimensional networks. Burt found that the personal networks of 

banker relationships tend to decay over time, though this was mitigated somewhat by the level of 

embeddedness of the nodes. Kivran-Swaine, Govindan, and Naaman (2011) show how network 

structure—strength of ties, embeddedness and status—influenced when people dissolved ties with others 

on Twitter by “unfollowing” them. Powell et al.’s work, mentioned above, looked at two-mode networks to 

see how different types of firms (e.g., DBFs and pharmaceutical firms) changed in link structure over time. 

 

 When network scholars have thought about network dynamics, they have tended to focus on the 

micro level. Research shows that networks grow by adding individual nodes, or links, or both, and that 

they decline the same way, by losing nodes, or links, or both. For example, Lescovec, Kleinberg, and 

Faloutsos (2007) examined the extent to which densification and network diameters change as networks 

add nodes and links. However, rather than focus on individual nodes and links, we can focus on entire 

modes of objects and types of relations. In this macro approach, we can make networks grow or shrink by 

adding or omitting an entire mode of objects or an entire type of relation. For example, we could delete 

over time one of the two modes represented in the figures in this section, people or technologies, or we 

could add an entirely new mode of objects, say, robots or avatars. Similarly, we could shrink networks by 

deleting one or more types of relationship. In our example, this could be the “friendship,” “provides 

information to,” or “retrieves information from” types of relation. And, we could allow networks to grow by 

adding new types of relations, such as “provides directions to.”  

 

 Microlevel multidimensional network dynamics. Figure 6 presents a very simplified representation 

of a dynamic microlevel multidimensional network. The types of nodes and the types of relations have not 

changed from Time 1 to Time 2. This network is composed of people and technologies, and it is linked by 

four types of relations. However, which nodes are linked, and by what relationship, have changed. Some 

people who were originally linked at Time 1 are no longer linked at Time 2 (N1 and N5). And some who 

were not linked at Time 1 are now linked at Time 2 (N1 and N2). Similarly, one of the nodes that existed 

at Time 1 is no longer a member of the network at Time 2 (Documents), and a new node that did not exist 

in Time 1 has joined the network at Time 2 (New Tech). 
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Figure 6. Dynamic Microlevel Multidimensional Network: Adding and Deleting Individual 

Instances of Nodes and Relations Over Time. 

 

 

  

Macrolevel multidimensional network dynamics. Figure 7 provides an example of a dynamic 

macrolevel multidimensional network. Here, a new mode (or type) of object, avatars, has been added to 

the network at Time 2. And a new type of embodiment relation between individuals and avatars has been 

added to the network. Figure 7 also depicts that a type of node (chemicals) and a type of relation between 

individuals and chemical (“tests with”) disappears from the network between Time 1 and Time 2. 

 

 



694 Contractor, Monge & Leonardi International Journal of Communication 5(2011) 

 
 

Figure 7. Dynamic Macrolevel Multidimensional Network: 

Adding and Deleting Entire Sets of Nodes and Relations Over Time. 

 

 

Summary 

 

In summary, unimodal networks comprise nodes that are all of the same type, while multimodal 

networks have nodes of different types. Likewise, uniplex networks are comprised of only one type of 

relationship among the nodes, while a multiplex network includes multiple types of relationships. A 

multidimensional network is one that is both multimodal and multiplex. Further, dynamic microlevel 

multidimensional networks are those where nodes or relations of existing types are added or eliminated 

over time. Dynamic macrolevel multidimensional networks are those where entire classes (or types) of 

nodes and relations might appear or disappear over time. It is important to point out that all seven cases 

in this typology can be studied as dynamic, rather than static, networks. We have illustrated the possible 

dynamic changes for the microlevel and macrolevel multidimensional cases in order to articulate the 

specifics of these more complex networks. Table 1 summarizes our framework for multidimensional 

networks. In the following section, we apply this framework to describe and understand a specific 

empirical example. 
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Table 1. A Framework for Multidimensional Networks. 

 

Unidimensional networks 

1. Unimodal, uniplex (single sets of nodes, single sets of relations) 

a.    Static (single points in time) 
b.    Dynamic (two or more points in time, nodes and links may be added or deleted) 
 

Partially multidimensional networks (multiple sets of nodes or multiple sets of relations, or both, but 

relations only between different sets of nodes) 

2. Multimodal, uniplex (multiple sets of nodes, single relations) 

a. Static  
b. Dynamic (two or more points in time, individual nodes or relations may be added or deleted) 
 

3. Unimodal, multiplex (a single set of nodes, multiple relations) 

a. Static 
b. Dynamic (two or more points in time, individual nodes or relations may be added or deleted) 
 

4. Multimodal, multiplex (two or more sets of nodes, two or more sets of relations) 

a. Microlevel  

i. Static 
ii. Dynamic (elements of sets of nodes and/or relations are added or deleted with relations 

only between different sets of nodes) 
b. Macrolevel 

i. Static 
ii. Dynamic (entire sets of nodes and/or relations are added or deleted with relations only 

between different sets of nodes) 
 

Fully multidimensional networks (multiple sets of nodes and multiple sets of relations with relations both 

within sets of nodes and among sets of nodes) 

5. Fully multidimensional networks (multimodal, multiplex nodes and relations with connections 

both within and among all sets of nodes) 

a. Microlevel 

i. Static  
ii. Dynamic (elements of sets of nodes and/or relations are added or deleted within and 

among all sets of nodes) 
b. Macrolevel 

i. Static 
ii. Dynamic (entire sets of nodes and/or relations are added or deleted within and among 

all sets of nodes) 
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Empirical Example:  How Multidimensional Networks Aid in the  

Explanation of Sociomaterial Dynamics 

 

Autoworks (a pseudonym) is a large automobile manufacturer. The company designs vehicle 

systems, like body structures, fuel systems, and powertrains, and it analyzes the interactions among them 

on a number of parameters. One of the most important of these is how well these systems work together 

to protect the vehicle’s occupants during a collision. The idea behind “crashworthiness engineering” is that 

the best chance occupants have of surviving a crash with little or no injury is for the vehicle to absorb the 

energy of a collision (DuBois, 2004). 

 

Crashworthiness is assessed both prospectively, using finite element (FE) analysis techniques on 

virtual simulations, and retrospectively, by analyzing the results of physical crash test data. Finite element 

analysis is a computational technique that divides the actual geometry of a part into a large but bounded 

(hence, finite) collection of small, discrete triangular or rectangular-shaped areas called finite elements. 

The elements are joined together at shared points.2 Analysts transform geometrical drawings of the 

vehicle’s systems into FE simulations by using pre-processing software. Pre-processors depict geometrical 

drawings in three dimensions and allow users to convert those drawings into an FE mesh. After the mesh 

is created, analysts select specific points in it that they would like to analyze. Then, computer solver 

technology is used to compare the location of this point before and after the collision. The solver gives the 

analyst a “displacement” calculation—a reading of how much change occurred as a result of the crash 

(Hughes, 2000). After the equations have been solved, analysts use post-processing software to, again, 

render the solution in three dimensions and obtain information on the performance, either of the vehicle 

as a whole, or of particular assemblies.  

 

 Crashworthiness analysts are dependent upon other analysts for information and advice on 

vehicle design. Analysts are also dependent upon numerous software programs (e.g., pre-processors, 

solvers, post-processors) to do their work, and those software programs also have computational 

interdependencies. Given the great number of social and technological interdependencies in 

crashworthiness engineering work, one would suspect that a small change in one set of relationships 

would quickly reverberate throughout the work system. This was the case when a relatively junior 

crashworthiness analyst named Jerry created a new software program to make his job easier. In the 

remainder of this section, we describe how this new software program became part of the crashworthiness 

engineers’ social networks, and we demonstrate that a multidimensional network approach is superior to 

the other approaches discussed above. Details of the data collection and analysis procedures for this two 

year ethnographic study can be found in Leonardi’s work (2009b, 2010, 2011, in press).  

 

 In their analyses of how well a vehicle faired in a crash, Jerry and his colleagues were often 

asked by management to determine how much various sections of the vehicle intruded into the occupant 

compartment. To make these “intrusion calculations,” analysts would pick some set of points and measure 

                                                 
2 The actual terminology that engineers use is that elements are joined together at “nodes,” not points. 

But, because we write so often about nodes of networks in this paper, we have changed the term to 

“points” to avoid confusion. 
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how much they moved inward toward the occupant during the crash. To conduct an intrusion calculation, 

the analysts would open their post-processing software and choose the desired points in the mesh of the 

vehicle before the crash occurred. They would then advance the simulation to a post-crash condition, 

choose those same points, and calculate the distance between them. This analysis caused Jerry and his 

colleagues a good deal of consternation, because no one was sure which points to select. How were 

analysts to know which selections would result in the most robust and reliable depictions of intrusion? 

 

 In late 2006, Jerry finished development work on a small piece of software that he hoped would 

make this work much easier. The program, which he named “Intruder,” (see Figure 8) was a simple script. 

After the solver completed its calculations of the simulation model, analysts would now send information 

from the solver directly to Intruder to render it for analysis without using the pre-processor to make their 

intrusion calculations. Analysts could choose from one of five common analysis scenarios in Intruder. 

Analysts would then move down the screen to the “Selections” box, which included the locations on the 

vehicle at which managers often wanted to see intrusion calculations (e.g., in Figure 8, the “B-Pillar 

Plane,” the column separating the front and back doors of a car) and the program would suggest the 

points that were likely to provide the most robust results (e.g., in Figure 8, Intruder suggests points 111–

113). Jerry hoped that Intruder would reduce the time to complete a job from an hour to less than 10 

minutes.    

 

 To determine which points to include as recommendations to the user in Intruder, Jerry consulted 

Balaji, another analyst who worked in the same department at Autoworks. Balaji was a senior analyst to 

whom Jerry often went for advice. In addition to consulting with Balaji, Jerry consulted a number of 

internal documents created by Autoworks that summarized best practices for analysis, as well as a 

number of government documents that detailed crashworthiness regulations at the federal level. After he 

felt Intruder was ready for use, Jerry asked Balaji to test it.  
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Figure 8. Screen Shot of Intruder Technology. 

 

 

Balaji liked Intruder immensely. Analysts at Autoworks shared large cubicles with one another, 

and Balaji’s cube-mate, Damen, saw him working with Intruder on multiple occasions. After some 

conversation about its features, Damen asked Balaji if he might be able to secure a copy. Balaji told 

Damen to ask Jerry if he could try a copy, and Jerry agreed. Damen quickly became a fervent Intruder 

user. 

 

 One day, Damen began to discuss Intruder with Cate, an analyst who worked in a different 

department and building, describing how much he liked using it. Cate asked Damen if she could obtain a 

copy. After securing permission from Jerry, Damen passed the software along to Cate. After a few weeks, 
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Cate showed Intruder to her departmental colleague, Sebastian. Sebastian and Cate had a close working 

relationship. Sebastian liked what he saw in the software and eventually procured a copy for himself.  

 

 Up to this point, this case reads like a fairly common diffusion of technology story: Intruder’s use 

spreads across a social network, and this diffusion is lubricated by various social forces. The technology 

moves from Jerry to Balaji due to a logic of exchange—Balaji will give feedback to Jerry in exchange for 

permission to use Intruder. The technology moves from Balaji to Damen based on a logic of proximity—

Balaji and Damen sit no more than two meters from each other and thus share common stimuli. The 

technology then moves from Damen to Cate based on a logic of friendship—though the two analysts do 

not work together, their bond is based on a relationship forged outside of the workplace. It is because of 

this friendship relation that Intruder diffuses out of the department in which it was initially created. 

Finally, the technology moves from Cate to Sebastian, based on a logic of reciprocity, given that they 

often exchange ideas and information.  

 

 Moving past a simple story of diffusion, scholars might ask how the new technology became 

enmeshed in the existing sociomaterial dynamics that constituted crashworthiness work. To do so, 

scholars would first have to select which types of communicative behaviors are of most consequence for 

this work. Researchers have shown that, in technical and engineering work, advice seeking behaviors play 

a key role in people’s ability to do their jobs effectively (Barley, 1990; Constant, Sproull, & Kiesler, 1996; 

Leonardi, 2007; Rice, Collins-Jarvis, & Zydney-Walker, 1999). In crashworthiness engineering work, 

analysts typically seek advice from one another. Although seemingly a banal type of consultation, research 

has shown that even basic advice-seeking behaviors—such as asking about what FE points to select—

construct status hierarchies that have important implications for interpersonal and organizational 

communication (Blau, 1955; Gould, 2002; Scott, 2004).  

 

Of course, not all advice-seeking about a given issue is of the same type. At Autoworks, analysts 

who sought advice sometimes went looking for a simple answer, and at other times, they went looking for 

an explanation about why certain points were preferred over others. In other words, analysts could be 

seeking advice about what points to select and why to select those points. Analysts were not restricted 

from seeking advice exclusively from people. They could, as Jerry did above, seek advice from documents. 

After its implementation, Intruder was also a possible indirect locus of advice.  

 

Before analysts began using Intruder, junior analysts often sought advice about what points to 

select and why it was appropriate for them to select those points from senior colleagues. Most junior 

analysts viewed the need to answer the what question as a good excuse to learn from the senior analyst 

about why those points were important. These advice-seeking behaviors were highly correlated with 

proximity and friendship. Junior analysts almost never consulted internal documents or external 

government documents for either what or why questions. Senior analysts, by contrast, almost never 

sought advice about what points to select or why to select them from junior people. Instead, they often 

consulted internal and external documents or asked others who held their same level of seniority. Senior 

analysts’ advice seeking about what and why practices were also highly correlated with each other, as well 

as with proximity and friendship.  
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Perceptions of expertise were based predominantly on advice-seeking behaviors. Because the 

departments were relatively small, people knew who received requests for advice and who did not. 

Analysts who were often sought for advice on what and why questions were revered as experts in 

crashworthiness analysis by their colleagues. Being considered an expert conferred numerous advantages 

at Autoworks, such as awards, sizeable salary increases, and the opportunity to work on prestigious 

projects.  

 

After analysts had used Intruder for two years, many changes were evident in the structure of 

their advice networks. Advice-seeking about what points to select became decoupled from advice about 

why one should select those points. Analysts who were both junior and senior stopped asking their 

colleagues for advice about what and turned their queries toward Intruder. Although Intruder was helpful 

at aiding analysts in deciding what points to select, it was of no help in instructing analysts as to why 

those were the correct points in the first place. For such an answer, analysts could turn to either 

colleagues or internal or government documents. Before Intruder was implemented, these consultations 

would have been made of senior colleagues. But because people were using Intruder and knew that Jerry 

(who was junior) created the software, they began to go to him for advice about why questions. The logic 

of this shift in advice-seeking behaviors was simple: If someone relied on the technology to tell them what 

points to select, the software’s developer must know why those were the appropriate points. 

 

The dynamics of this case, simple though they may be, are actually fairly difficult to capture with 

traditional network models. Consider, for example, the unimodal uniplex network most often used by 

network researchers. If we would take a cross-section of advice network relations at two points in time—

Time 1 = before Intruder is implemented, and Time 2 = two years after Intruder—we would only be able 

to map one set of relationships for nodes of one type. For the case presented above, we can render a 

network comprised of nodes representing our five analysts and edges representing advice seeking about 

what points to select (see Figure 9). At Time 1, Balaji occupies a fairly central role. We also see an 

information retrieval relationship across departments (between Damen and Cate) that is difficult to 

explain. Why are these two connected? The network dynamics following the implementation of Intruder 

are even harder to decipher. The graph for Time 2 shows only Sebastian seeking advice from Cate, but all 

other relations have disappeared. An observer of this longitudinal, unidimensional (unimodal, uniplex) 

network analysis would likely conclude that Intruder disturbed the existing fabric of social relationships in 

crashworthiness engineering at Autoworks, perhaps supplanting analysts as a source of information.  
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Figure 9. Explaining Sociomaterial Change Over Time by Using a Unidimensional Network. 

 

 

If we analyze this case using a unimodal multiplex network, we would uncover a very different 

story than what we saw in a unimodal uniplex network. Figure 10 shows the addition of other types of 

correlated relations at Time 1. Analysts who seek advice from a colleague about what points to select are 

also likely to seek advice about why they should select those points. Analysts tend to consider the people 

from whom they seek advice about what and why to also be experts about both topics. Moreover, advice-

seeking and expertise-conferring behaviors are correlated with friendship or proximity. One might infer 

here that friendship and proximity are drivers of who people consider to be experts. The depiction of 

network dynamics at Time 2 is strikingly different from that shown by the unimodal uniplex network. 

Whereas the unidimensional network suggests that the technology brings a near-complete halt to inter-

collegial advice seeking, the graph at Time 2 in Figure 10 shows Jerry becoming a very central actor on 

three sets of relations: (1) advice about why to select certain points, (2) expertise about what points to 

select, and (3) expertise about why one would select certain points. Further, many of the relations among 

the others (e.g., Balaji and Damen) have dropped away. Alone, the unimodal multiplex network might 

lead the observer to conclude that the technology shifts status and power toward its creator, Jerry. But 

the observer would have trouble explaining what happened to advice-seeking on what points to select. Did 

Intruder simply teach analysts how to select points, and now, they no longer need to seek advice on this 

behavior? The answer is unclear because technologies are not represented in the model. 
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Figure 10. Explaining Sociomaterial Change Over Time by Using a Unimodal Multiplex Network. 

 

 

 

An analysis of this case using a multimodal uniplex network (Figure 11) would help to more clearly explain 

the specific role that Intruder played at Autoworks. Focusing on advice seeking about what points to 

select, at Time 1, we would see that a few of the analysts consulted internal documents to make 

determinations about where to select points for intrusion calculations. At Time 2, we would learn that all of 

the analysts in the case have shifted their advice seeking patterns, and that they now consult Intruder 

when needing to determine what points to select. The story an observer of these networks might tell is 

one of deterministic technological change—a newer technology replacing an older technology. Due to the 

uniplex nature of the network, the observer would not know who of the analysts, if any, sought advice 

from each other about what points to select. We also would not know whether the technology had 

changed perceptions of expertise and status, or whether it had simply transferred people’s practices from 

one technology to another.  
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Figure 11. Explaining Sociomaterial Change Over Time by  

Using a Multimodal Uniplex Network. 

 

Figure 12 depicts the dynamics of the case using a multimodal, multiplex (or a partial 

multidimensional) network, in which multiple relations are represented between two types of nodes. The 

different types of nodes at Time 1 include people, technologies such as the Solver, Pre-Processor, Post-

Processor, and the various documents that analysts used. At Time 2, it also includes Intruder. The 

different relations include people’s perceptions of what expertise technologies possess about what points 

to select and why to select those points. It also includes relations that indicate from what technologies 

people choose to retrieve this information. This graph clearly shows that, at Time 1, only Jerry, Balaji, and 

Cate, the three senior analysts, sought advice from technologies and considered certain technologies as 

expert sources of knowledge. All three of the senior analysts sought advice about what points to select 

from internal documents, and all three considered those documents to be expert source of knowledge. 

Only Jerry consulted external government documents for advice on why certain points should be selected 

and came to view those documents as expert sources for this type of information. At Time 2, the graph 

shows that all three senior analysts have stopped consulting internal documents for what issues, and that 

they have shifted their queries to the new technology, Intruder. Additionally, junior analysts now consult 

Intruder for what questions as well. Jerry continues to consult government documents for why questions. 

 

It is important to note that this multimodal, multiplex network contains only relations between 

the different types of nodes. It does not contain relations among the same types of nodes, like people or 

technologies. If observers used this partial multimodal, multiplex network to interpret the dynamics of the 
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case, they would likely conclude that, before Intruder, junior people did not seek advice at all, from 

anyone or any technology.  

 

 

 
 

Figure 12. Explaining Sociomaterial Change Over Time by Using a  

Multimodal Multiplex Network. 

 

 

As we have argued above, in order to more accurately reflect contemporary usage patterns, the most 

capable depiction of the dynamics of sociomaterial systems is generated through the use of a 

multidimensional network in which multiple relations are represented between and within different types 

of nodes.  

 

Figure 13 provides an illustration of a full multidimensional network for this case. At Time 1, we 

can see a pattern of associations between advice-seeking about what points to select and why one should 

select those points. We see that these two advice-seeking practices vary with perceptions of who (person) 

or what (artifact) is perceived to have expertise about these two topics. We also see that friendship and 

proximity are social forces integral to advice-seeking from, and expertise-construal for, people, but that 

they are not so for technologies. This is because friendship is a logic of attachment that is appropriate for 

relations among people, but not between people and technologies or among technologies. Proximity is a 

meaningful construct when applied to people, but it cannot drive the formation of relationships between 
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people and technologies. We also see that there is a submission relation between the pre-processor and 

the solver, as well as a rendering relation between the solver and the post-processor. Both of these types 

of relations are inappropriate for characterizing the communicative patterns among people. 

 

 

 
 

Figure 13. Explaining Sociomaterial Change Over Time by Using a  

Fully Multidimensional Network. 

 

 

At Time 2, the fully multidimensional network shows that the Intruder software and Jerry have 

become central nodes. By examining multiplex ties among and between nodes of different types, we can 

see that advice-seeking practices and attributions of expertise that were directed toward senior analysts 

before the implementation of Intruder are now split between Intruder and Jerry. Intruder has become the 

central actor in what advice consultations, and it is seen by analysts as an expert in what knowledge. 

Jerry has become the central actor in why advice consultations, and he is seen as an expert in why 

knowledge.  

 

By examining this multidimensional network longitudinally, we can also begin to make inferences 

about how these shifts in network dynamics occurred. At Time 1, Jerry is the only analyst who actively 

consults the government documents to learn why one would select certain points. Intruder is able to serve 
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as a source of advice to analysts about what points to select. But although the knowledge Jerry gained 

from the government documents about why certain points should be selected is inscribed in Intruder, it is 

not explicit, and it cannot be easily decoded by a user. Thus, the users who have begun to view Intruder 

as an expert on what points to select now go to Intruder’s creator to learn why to select those points. In 

effect, Intruder acts as a gravitational force; as the technology comes to be viewed as an expert source 

for what, Jerry is pulled to the center of the network as an expert source for why. Finally, Intruder 

changes the relationship among the technologies. Solvers no longer render solutions to pre-processor in 

Time 2; instead, they render solutions directly to Intruder. 

 

Summary 

 

This illustration of the sociomaterial dynamics of crashworthiness engineering at Autoworks 

shows that many of the alternatives in the network typology presented in the previous section fail to 

capture the richness of these data. As we moved progressively through each analytic alternative, we 

sought to demonstrate how this narrative can be best understood when the new technology and other 

non-human artifacts are considered to be part of the multidimensional network, rather than as separate 

entities influencing and being influenced by the social network. We used the fully multidimensional 

network framework to understand the structure and dynamics of networks involving different types of 

nodes (people and technology) and different types of relations both among and between people and 

technologies. In particular, we demonstrated that examining the network from the unimodal and uniplex 

frameworks provided an inadequate and often misleading representation of the underlying structure and 

dynamics. The rich interplay between people and technology was progressively revealed as we considered 

a unimodal uniplex representation (Figure 9), a unimodal multiplex representation (Figure 10) or a 

multimodal uniplex representation (Figure 11), a multimodal multiplex representation (Figure 12) with 

relations only between nodes of different types (people and technologies), and finally, a multimodal 

multiplex "fully multidimensional" representation (Figure 13) with multiple types of relations among and 

between nodes of different types (people and technologies).  

 

Although many authors recommend longitudinal, ethnographic approaches to capture the 

sociomaterial dynamics of organizing (e.g., Leonardi & Barley, 2010; Orlikowski & Scott, 2008), this type 

of study is not always possible. Some processes involve so many different types of actors that it would be 

nearly impossible to create an observation record capturing all of their interactions. Some organizing 

processes transpire over such a long period of time that field observation is not feasible. Nonetheless, we 

believe that including multiple types of relations within and between multiple types of actors will 

significantly increase our ability to analyze complex dynamic sociomaterial phenomena like those 

illustrated by these ethnographic data. However, when attempting to identify and explain sociomaterial 

dynamics at scale, it is helpful to have certain heuristics with which to be able to detect particular patterns 

within the data. In the next section, we explore these multidimensional representations. 
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Developing Multi-Theoretical Multilevel Models of Multidimensional Networks 

 

In the past decade, social network scholarship has made a concerted effort to move from 

describing a network to developing techniques that explain the emergence and dynamics of the network. 

The development of analytic techniques to explain the emergence of networks is often motivated by multi-

theoretical multilevel (MTML) models (Monge & Contractor, 2003). These models are multi-theoretical 

because of a growing recognition among social networks researchers that the emergence of a network can 

rarely be adequately explained by a single theory. Therefore, these models combine disparate theoretical 

generative mechanisms, such as self-interest, collective action, social exchange, balance, homophily, 

proximity, contagion, and co-evolution. These models are multilevel because the emergence of a network 

can be influenced, for instance, by theories of self-interest that refer to characteristics of actors (at the 

individual level), theories of social exchange that describe ties between pairs of actors (at the dyadic 

level), theories of balance that explain configuration of ties among three actors (at the triadic level), and 

theories of collective action that explain configurations among larger aggregates of actors (at the group or 

network level).  

 

Of particular interest from an analytic perspective is that each of these theoretical generative 

mechanisms has a “structural signature” that is unique to that theory. Figure 14 shows the structural 

signatures associated with several theoretical mechanisms. Hence, in the case of social exchange given a 

network where the solid lines represent a set of relations among the actors, there is a greater likelihood of 

a tie from C to A because it reciprocates a tie from A to C. Likewise, there is a lower likelihood of a tie 

from F to D because of the absence of a relation from D to F. Recent statistical advances, such as 

exponential random graph models (also known as p*, see Robins, Snijders, Wang, Handcock, & Pattison, 

[2007] for a recent review) are able to assess the degree to which these structural signatures are 

observed in a network, above and beyond what might be expected in comparable random networks. As 

such, these methods provide the means to test multi-theoretical multilevel hypotheses about mechanisms 

that explain the emergence of networks (Contractor, Wasserman, & Faust, 2006).  
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Figure 14. Examples of Structural Signatures Associated with Theories of Network Emergence. 

 

 

Although MTML models have been used to understand the emergence of unidimensional networks 

among unimodal nodes (such as people or organizations), there is considerable potential for developing 

and testing new theories to explain the emergence of multidimensional networks. Software tools now exist 

to test multi-theoretical multilevel hypotheses for cross-sectional and longitudinal partially 

multidimensional networks—those that are multiplex or multimodal but without relations among different 

types of nodes (Seary & Richards, 2000; Huisman & Van Duijn, 2005;; Handcock, Butts, Goodreau, & 

Morris, 2008; Steglich, Snijders, & West, 2006).   

 

 While the structural signatures illustrated in Figure 14 capture the theoretical motivations to 

explain the emergence of relations among unidimensional networks, the previous section demonstrates 

that they are ill-equipped to unravel the structural signatures that might explain the structure and 

dynamics of multidimensional networks. For instance, one theoretical mechanism included within the 
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MTML model can explain why it is true that, if individual A knows B, and B knows C, then over time, based 

on theories of balance, there is a greater likelihood that A will know C. We can test that hypothesis by 

counting the number of times the structural signature implied by that logic (shown in Figure 14 as 

Theories of Balance) is more than one would expect in a commensurate random network. The assumption 

here is that A, B, and C are all nodes of the same type—they are all people. But in the multidimensional 

networks we are considering here, A and B might be people, but C might be a technology. This opens up 

the possibility of inscribing a vast number of new structural signatures that capture the dynamics of how 

multiple network relations among and between individuals and technologies will enable or constrain their 

dynamics.  

 

The case study described in the previous section offers several provocative examples of structural 

signatures that might be particularly relevant in understanding the emergence of the multidimensional 

network depicted in Figure 13. Consider how extant theories of network emergence might be used in the 

present example. The theory of transactive memory systems developed by Moreland (1999) and Wegner 

(1995), for example, has been used extensively to explain the emergence of knowledge networks 

(Hollingshead, Fulk, & Monge, 2001; Su & Contractor, in press; Su, Huang, & Contractor, 2010; Yuan, 

Monge, & Contractor, 2010). This theory states, in part, that individuals are more likely to retrieve 

information from those they perceive to be experts in a particular area. As shown in Figure 14 (see 

Theories of Cognition), a novice (A) is both more likely to go to an expert (E) and less likely to go to 

another novice (D). If the network was driven by this mechanism, we would expect to find a pattern of 

association between a relationship where one individual considers the other as an expert and a 

relationship where that individual retrieves information from the expert. The simultaneous presence (or 

absence) of these two relations between individuals would therefore serve as the structural signature for 

the theory of transactive memory systems. A quick review of Figure 13 does, indeed, suggest that, at 

Time 1, individuals who consider others as having expertise on what points to select are also more likely 

to retrieve information from those with expertise on what points to select. For instance, Jerry rates Balaji’s 

expertise highly on what points to select, and he also reports retrieving information on what points to 

select from Balaji. Continuing to examine Figure 13, there also appears to be an association at Time 1 

between an individual's perceptions of those who have expertise on why to select a certain point and their 

likelihood of retrieving information from the same people. For instance, Cate considers Damen as having 

expertise on why to select a certain point, and she also reports retrieving information from Damen on this 

topic. The structural signature shown here is consistent with what has been developed for unimodal MTML 

models, and it is shown in Figure 15. If individual N1 perceives individual N2 as an expert, N1 is more 

likely to retrieve information from N2 and less likely to retrieve information from N3, who is not perceived 

an expert. This structural signature serves to validate a hypothesis offered by transactive memory theory 

in a multidimensional network. 
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Figure 15. Structural Signature for Perceived Expertise and Information Retrieval 

Among People Based on Theories of Transactive Memory. 

 

 

However, the above example based on the theory of transactive memory systems also illustrates 

the potential of extending existing theory from unidimensional to multidimensional networks. While the 

theory of transactive memory systems was developed to explain knowledge networks comprising 

individuals, the nodes in the Figure 13 network are individuals and technologies. An extension of the 

theory of transactive memory systems would suggest that the association between perceptions of 

expertise and retrieval should occur not only among people, but also between people and technologies. 

For instance, in Figure 13 at Time 1, Jerry (a person) reports a government document as having a high 

level of expertise, and he also reports retrieving information from the document. The structural signature 

for this tendency is shown in Figure 16.  
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Figure 16. Structural Signature for Perceived Expertise and Information Retrieval Between 

People and Technologies Based on Extensions to Theories of Transactive Memory. 



International Journal of Communication 5 (2011)  Multidimensional Networks   711 

 

Here, the structural signature involves an individual N1 and two artifacts T1 and T2. If the individual N1 

perceives technological artifact T1 as having expertise on a particular topic, N1 is more likely to retrieve 

information on that topic from T1, rather than from technological artifact T2, which is not perceived as 

having expertise on that topic. This structural signature invites consideration of what the theory might 

posit about links between humans and technological artifacts in a multidimensional network. It is 

interesting to note that this structural signature is not particularly prevalent. For instance, both Balaji and 

Cate consider the government document as having expertise on this topic, but they do not retrieve 

information from the government document. Given that the co-presence of an expertise relation and a 

retrieval relation might occasionally occur in any random network, the ERGM/p* analysis would likely 

prove to be statistically insignificant.  

 

In fact, the network at Time 1 in Figure 13 suggests a novel structural signature with potentially 

interesting theoretical insights. Notice that, though Balaji recognizes the expertise embodied in the 

government document, he is more inclined to retrieve that information from Jerry, who retrieved that 

information from the document. This pattern might suggest a structural signature that, when given a 

choice to retrieve information from a technology or an individual, people are more likely to retrieve the 

information from other people who have already retrieved it from the document. The structural signature 

for this multidimensional configuration is shown in Figure 17, where, given that individuals N1 and N2 

perceive that technology T1 has expertise on a topic and N1 retrieves information from T1, N2 is more 

likely to retrieve information from individual N1 than from technology T1. The structural signature 

discussed in this example illustrates how a multidimensional network framework can be used to extend 

transactive memory by simultaneously considering both interactions among people and those between 

people and technological artifacts.   
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Figure 17. Structural Signature for Perceived Expertise and Information Retrieval Among and 

Between People and Technologies Based on Extensions to Theories of Transactive Memory. 
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Figure 13 also provides several illustrations of how structural signatures can be used to theorize 

the dynamics of networks—in this case, from Time 1 to Time 2. One focal point is the emergence of the 

new Intruder software as an important network node. The introduction of this new technology by Jerry 

resulted in several individuals within the network adopting the new technology based on contagion, social 

exchange, proximity, homophily, or friendship ties with Jerry and his colleagues. The adoption of this 

technology by an individual is represented by the presence of a retrieval link from the individual to the 

Intruder technology. A structural signature for this adoption based on contagion would suggest that a 

person would create a retrieval link to Intruder if the person had a friendship link to another person who 

already had a retrieval link to Intruder. For instance, Balaji should have a retrieval link to Intruder 

because Balaji has a friendship link with Jerry, who already has a retrieval link to the Intruder. This 

particular structural signature is shown in Figure 18.  

 

 

 
Figure 18. Structural Signature for Information Retrieval  

Between People and Technologies Based on Theories of Contagion. 

 

 

A similar approach can be used to test the hypothesis that proximity leads to adoption of a new 

technology. In this case, the structural signature would suggest that a person is more likely to retrieve 

information from Intruder if they have a proximity tie to another individual who retrieves information from 

this same new technology. In Figure 13 at Time 2, this structural signature can be found between Balaji, 

Damen, and the Intruder technology. This structural signature is analogous to the one shown in Figure 18, 

with the friendship relation replaced by the proximity relation. 
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Finally, structural signatures can also be used to develop new theories about how the introduction 

of technology, a new node in a multidimensional network, can transform the structure of relations in that 

multidimensional network. The network in at Time 1 in Figure 13 indicates that individuals in the network 

identified several others who had expertise, from whom they then retrieved information about what points 

to select and why. The development of the Intruder software by Jerry resulted in the introduction of a new 

node (the software) at Time 2 and a “development” link from Jerry to this node. This appears to have 

resulted in a substantial restructuring of the networks. Individuals forged expertise and retrieval links to 

this new technology on issues related to deciding what points to select. Further, they maintained retrieval 

links to the developer of this technology (Jerry) on issues related to why to select these points while 

dissolving links with others. The structural signature that can be discerned is this: If an individual 

develops a link to a new node (i.e., develops a technology), individuals who previously went to others 

sources for information provided by the technology will create links to the technology on certain 

(automated or what) aspects of the task, but will create links with the developer of the technology for 

other (more intellectual or why) aspects of the task. This structural signature is shown in Figure 19. 

 

 

 

+

Technology
People

Nodes: Relations:
Expertise on Topics X and Y

Retrieve information on X

N1 T1

-
N2

Likelihood to retrieve
Information on Y

N3

Create technology

 
 

Figure 19. Structural Signature for Change in Information Retrieval  

Among People and Technologies Following Creation of a New Technological Artifact. 

 

 

It shows that N1 develops a new technology T1, and that N2 perceives that both N1 and N3 have 

expertise on related topics X and Y. Given these conditions, if N2 now uses technology T1 to retrieve 

information on X, N2 is more likely to retrieve information on Y from N1 than from N3. A high prevalence 

of this structural signature will explain the transformation in the network, including significant changes in 

the prominence of some nodes. This example also shows multiple relations both within node types 

(people) and between node types (people and technologies), thus illustrating a fully multidimensional 

network.   
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This modest case study illustrates the distinctive structural signatures that emerge from an 

analysis of a multidimensional network. Our goal here has been to develop a multidimensional framework, 

and to demonstrate how it can be used to tease out novel structural signatures that capture the richness 

missed by unidimensional analyses. We have also shown how to incorporate new technologies and other 

non-human artifacts into social networks. The added value of the multidimensional approach emerges 

when we seek to unravel the dynamics of sociomateriality at scales that go beyond small case studies. 

Furthermore, the multidimensional network approach and methods will enable us to develop novel 

theories, and to more precisely test extensions to existing theories with a degree of inferential certitude 

that will benefit from, and contribute to, the careful case studies and in-depth ethnographies that have 

been the mainstay of scholarship based on actor-network theory and sociomateriality. 

 

In summary, there are three reasons for the development of MTML models of multidimensional 

networks. First, articulation of new multidimensional structural signatures will enable us to examine 

unique network patterns. Second, it enables us to empirically investigate the extent to which multiple 

structural signatures (which, in turn, reflect multiple logics of attachment) might simultaneously be 

considered in understanding the emergence of the multidimensional networks. Third, it opens the 

possibility of attempting to understand the emergence of multidimensional networks where there is a large 

corpus of digital data tracing the network relations within and between human actors and technologies. In 

such cases, MTML models can be used to posit and detect structural signatures that have previously been 

proposed or tentatively identified using theory or ethnographies. 

 

The promise of this approach is further accentuated by the potential of applying these 

frameworks to address interesting and intriguing questions about the emergence of multidimensional 

networks that are on the scale of the Web (Lazer et al., 2009). The increasingly easy access to large 

amounts of multidimensional network data from the Web within the past decade make this challenge 

eminently addressable. Specifically, the recent exponential growth in the development and utilization of 

the Semantic Web (especially the Linked Open Data initiative) offers considerable promise in capturing, 

collating, and reasoning about large-scale multidimensional networks (Berners-Lee et al., 2006; Hall, this 

special section; Shadbolt, Hall, & Berners-Lee, 2006). Engaging with these multidimensional networks at 

the scale of the Web will provide us with an unprecedented opportunity to understand the implications of 

technology becoming part of the networks from the perspective of theories of actor networks and 

sociomateriality. 
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