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Advances in multimodal media analysis, which involve systematic coding of nonverbal, tonal, and 
rhetorical elements of political behavior, have enabled researchers to characterize the landscape of political 
performance at a level of richness and detail that has surpassed earlier efforts to content analyze news or 
other forms of political communication such as presidential debates (see Bucy & Stewart, 2018; Grabe & 
Bucy, 2009; Joo, Li, Steen, & Zhu, 2014; Shah et al., 2016; Shah, Hanna, Bucy, Wells, & Quevedo, 2015; 
Stewart, Bucy, & Mehu, 2015). Although communication researchers have spent much time and effort on 
the analysis of news frames and other content elements of media coverage (see D’Angelo, 2018), as well 
as on the rhetorical themes and functions of political debates (e.g., Benoit, 2013; Hart & Jarvis, 1997), the 
visual analysis of news and politics has been given scant research attention until recently. 

 
Research conducted over the past decade has begun to make up for this deficit in the literature, 

with longitudinal and cross-national studies of visual framing and leader display behavior (see Bucy & Grabe, 
2008; Esser, 2008; Grabe & Bucy, 2009), along with detailed coding of candidate nonverbal communication 
in presidential debates (Shah et al., 2015, 2016). Although this work is more encompassing than what has 
come before, and is built on a solid foundation of ethological (i.e., behavioral) analysis, the coding categories 
lack the descriptive precision of computational approaches and are time consuming because they are 
performed by hand, relatively limited in scope, and cumbersome to apply. The possibility of human error 
also requires close training and continuous efforts at quality control and consultation to maintain a high 
degree of intercoder reliability (Bucy & Gong, 2016). Although useful on a small scale, manual coding does 
not allow the documentation of behavior on larger scales, which typically limits analysis to single-year 
studies. As a consequence, researchers working in the area have pointed optimistically to a time when 
coding of televised political behavior may be captured and recorded algorithmically (Bucy & Stewart, 2018). 

 
This project introduces a novel computational methodology that uses machine classification 

techniques for analyzing nonverbal behavior, including facial expressions, gestures, and related movements, 
from recordings of televised political events. Using computer vision and machine learning techniques, the 
new method allows researchers to automatically detect and classify diverse communicative gestures or any 
other nonverbal signals that have been manually coded in traditional work. To demonstrate the new 
computational method, we developed a fully automated computational pipeline that can classify fine-grained 
facial expressions and body movements. We then applied the method to a C-SPAN video recording of the 
first 2016 U.S. presidential debates between Donald Trump and Hillary Clinton. The results confirm that 
automated methods can replicate human coding with a high degree of accuracy for evocative gestures and 
facial expressions, as well as nonverbal tics and signature displays unique to individual candidates. 
Automated coding should soon facilitate rapid progress in quantitative research in visual communication by 
dramatically scaling up existing manual studies. 

 
Studying Nonverbal Cues 

 
Building a conceptual case for systematically studying nonverbal cues in presidential debates begins 

with an appreciation for the social information that expressive communication imparts (Grabe & Bucy, 2009). 
Nonverbal information consists of both static capacity cues, including stable candidate characteristics such 
as height and attractiveness, and dynamic behavioral signals such as facial expressions, eye blinks, head 
movements, evocative gestures, vocalics, and other communication behaviors. Production features that 
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affect candidate presentation such as camera angles and shot lengths also influence how viewers see the 
candidates. Even audience applause and exhortations, particularly in primary debates, have figured into 
presidential debate research (Stewart, 2012). Particular effects on second screen activity—namely, Twitter 
messages in response to real-time presidential debate dynamics—have been found for candidate facial 
displays, evocative gestures, and voice tone (Bucy et al., forthcoming; Shah et al., 2016; Wells et al., 2016). 
In these studies, nonverbal behaviors are generally found to drive Twitter response more than verbal or 
rhetorical indicators. Experimental research of candidate exchanges during debates using eye-tracking 
methodology confirms these findings and documents how display appropriateness elicits viewer attention in 
the form of gaze fixation and frequency, especially expressions that are categorized as inappropriate (Gong 
& Bucy, 2016). 

 
The priority that the information processing system gives to nonverbal behavior, particularly facial 

expressions and displays of emotion, derives from the long evolutionary history of vision in relation to speech 
and the efficiency with which the brain recognizes and responds to visual signals (see Grabe & Bucy, 2009). 
Compared with institutions, abstract concepts, and other political structures that are difficult to visualize 
and hold in memory, images of leaders “are easily recognized and function as effective information 
processing cues” (Masters, Frey, & Bente, 1991, p. 374). Facial expressions are especially reliable indicators 
of a communicator’s emotional and motivational state, transmitting important social signals to observers 
(Bucy & Bradley, 2004). Both independently and in conjunction with gestures and paravocal cues such as 
voice tone, facial expressions serve as the basis of judgments about politically relevant traits, including 
competence, integrity, political viability, dominance, and appropriateness (Benjamin & Shapiro, 2009; Bucy, 
2011; Joo et al., 2014; Joo, Steen, & Zhu, 2015; Joo, Steen, & Turner, 2017). Judgments of competence 
that predict vote choice may be made from very thin slices of expressive behavior, including just 100-
millisecond exposures to candidate photographs (Olivola & Todorov, 2010). The communicative efficiency 
of expressive displays derives from the extraordinary sensitivity humans, beginning in infancy, show to 
differences in the facial behavior they observe (Babchuk, Hames, & Thompson, 1985). 

 
In most political communication settings, persuasive influence rests at least as much in the social 

information carried by nonverbal behavior as the semantic information in candidate pronouncements (Bucy, 
2017; Shah et al., 2016). The use of the continuous split-screen presentation format by U.S. television 
networks in recent presidential debates, in which both candidates are shown without pause regardless of 
whether they are speaking, has augmented this trend and highlighted nonverbal aspects of candidate 
behavior to an unprecedented extent. Until recently, however, it was much more common to analyze debates 
from the perspective of rhetorical argumentation, voter learning about candidate issue stands, or candidate 
character than to appreciate the wealth of social information that a biobehavioral understanding of debates 
imparts. Perhaps not surprising, the influence of debate viewing on candidate preference in general elections 
has been viewed as somewhat limited, with attitude reinforcement, evaluations of candidate traits, and 
voter learning identified as major outcomes (McKinney & Warner, 2013), owing in part at least to this 
incomplete conceptualization. 

 
New studies, more nonverbally oriented and methodologically sophisticated than previous waves 

of presidential debate research, are documenting a wider range of effects—and differences among 
candidates—using biologically based measures and real-time outcomes (for an overview, see Bucy & 
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Stewart, 2018). Yet, almost all of this coding to date has been conducted manually with human coders, 
typically at 30-second intervals (although recent work is looking at 10-second intervals), and recorded 
for the presence or absence, rather than frequency and duration, of nonverbal behaviors (see Bucy, 
2016). Manual coding of presidential debates and other audiovisual content is a time-consuming, 
painstaking process. To ensure accuracy, multiple passes of the same content are required, and for every 
hour of content, it takes multiple hours to perform reliable manual coding; the time required only 
intensifies with coding performed at the level of facial muscle movement (e.g., using the Facial Action 
Coding System). 

 
In the coding of political facial display behavior, two coding schemes are particularly influential: 

the political ethology approach developed by Masters, Sullivan, Lanzetta, McHugo, and Englis (1986), which 
uses emotion/behavioral intention pairs (e.g., happiness/reassurance, anger/threat, fear/evasion), and the 
Facial Action Coding System (FACS) introduced by Ekman and Friesen (1976), which identifies face 
movements at the level of individual muscle changes. Both of these systems have been employed in recent 
political communication research. Given its more general frame of reference, the ethological approach has 
been more widely applied to news coverage of elections and presidential debates (see Bucy, 2016; Bucy et 
al., forthcoming; Grabe & Bucy, 2009; Shah et al., 2015, 2016), and FACS coding has been used in 
experimental and content analytic research of political speeches examining smaller slices of expressive 
behavior (see Stewart et al., 2015; Stewart & Dowe, 2013; Stewart, Waller, & Schubert, 2009). 

 
Thus far, coding of political communication using either FACS or the ethological approach has been 

performed manually. Human coding is of course sensitive to nuance in expression and ambiguity, but 
computer analysis of candidate behavior can bring a much higher degree of precision through continuous 
tracking of facial display behavior compared with the intermittent coding of manual observation. Instead of 
one data point for every 30-second (or 10-second) interval, automated coding can produce 30 data points 
per second, and hence 900 data points for every 30-second interval (or 300 for every 10-second interval). 
Once a classifier is trained to recognize nonverbal cues based on human coding, the computational approach 
can offer exponentially more precision and provide a much closer numeric representation of expressed 
reality. At the same time, computational coding can track considerably more display variability for statistical 
testing, and exact durations of expressive behaviors can be calculated for a fuller descriptive portrait of the 
candidates’ on-stage performances. 

 
From a practical standpoint, televised presidential debates offer an advantageous testing ground 

for automated coding because, at least when the candidates are positioned at a podium or sitting at a 
table, they feature an unobstructed, well-lit view with the candidates in relatively fixed positions and 
shown against an invariant background. In fixed-podium debate formats, the candidates face the camera 
more or less continuously, while occasionally glancing down at their notes or at the opposing candidate. 
This consistency allows researchers to focus on movements of interest without having to track the 
candidates around the stage (as with a town hall debate format) and parse other figures or objects in the 
background. Related work by Koppensteiner and Grammer (2010) has used political speeches given in 
legislative chambers to distill the bodily movements of speakers into stick figure animations; findings 
show a correlation between the speaker’s movement and personality type. In view of these advances in 
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political behavior analysis, we next review existing approaches to the automated coding of nonverbal 
data. 

Automated Coding of Nonverbal Data 
 

Evolution of Computational Tools for Visual Analysis 
 
In the past decade, numerous computational analytic tools—for example, topic modeling from text 

data (Blei, 2012), opinion mining and sentiment analysis (Pang & Lee, 2008), or community detection in 
social media (Papadopoulos, Kompatsiaris, Vakali, & Spyridonos, 2012)—have been developed and applied 
to research questions in communication. These new techniques are usually innovated by computer scientists 
and transferred to researchers in other disciplines who then customize these tools to their own data and 
questions. Computational approaches enable social scientists to incorporate large-scale data sets, such as 
online archives of news texts or social media posts, into their studies at reduced cost. Taking full advantage 
of the new tools and techniques, however, typically requires a multidisciplinary effort so that the social 
scientific and computational elements are equally represented (see Bucy & Stewart, 2018; Joo & Steinert-
Threlkeld, 2018). 

 
Given the large volume of research in visual communication and nonverbal behavior analysis, it is 

also natural to apply advanced computational tools to large-scale data sets of images or videos. As 
mentioned, manual coding of visual data is notoriously slow and expensive. Computational tools, if they 
work, can facilitate research progress by substantially lowering coding costs. In computer vision and 
machine learning, these tools have been developed over decades, but their quality and identification rate 
were not reliable enough for use in actual applications until very recently, when the field made tremendous 
gains in accuracy by using artificial deep neural networks (LeCun, Bengio, & Hinton, 2015). 

 
Artificial neural networks are computational models whose structure is defined by a number of 

internal nodes and their connections. An artificial neural network resembles a biological neural network in 
its structure and the way that information is passed between neurons. The model and its training algorithm 
were introduced in the 1980s (LeCun et al., 1989) but remained relatively underused because of 
computational complexity and difficulty in training. In the recent years, however, neural networks have 
emerged as the most popular and powerful machine learning framework after computationally efficient GPU-
based algorithms were developed and large-scale training data sets became available (Krizhevsky, 
Sutskever, & Hinton, 2012). For more technical background about deep learning methods, we refer readers 
to Joo and Steinert-Threlkeld (2018). 

 
Advanced computer vision and deep learning methods have been increasingly employed by scholars 

in communication and political science to ease the burden of manual coding and widen the scope of analysis. 
Recent examples include identifying visual framing of political leaders in mass media and its relation to the 
public opinion (Joo et al., 2014), predicting election outcomes from the facial appearance of candidates (Joo 
et al., 2015), measuring media bias from facial expressions of politicians (Boxell, 2018; Peng, 2018), 
predicting and characterizing political ideology from social media images (Xi et al., 2019), estimating the 
polarization in Congress from human motion data (Dietrich, 2019), detecting deception and assessing 
credibility during interviews (Pentland, Twyman, Burgoon, Nunamaker, & Diller, 2017; Yu et al., 2015), and 
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detecting and characterizing social movements and collective actions using social media images (Steinert-
Threlkeld, Chan, & Joo, 2019; Torres, 2018; Williams, Casas, & Wilkerson, 2019; Won, Steinert-Threlkeld, 
& Joo, 2017; H. Zhang & Pan, forthcoming). As these examples demonstrate, automated computational 
methods in computer vision and machine learning can fit into social science frameworks and enable large-
scale quantitative analysis of visual data. 

 
Automated Facial Expression and Emotion Analysis by Computer Vision 

 
Computational techniques for visual analysis have traditionally been developed and used by 

scholars in computer science, but recently a body of work using computer vision has been applied to 
communication research. This subsection reviews existing studies incorporating a fully or semiautomated 
computational approach to analysis, focusing on the applications in nonverbal communication. 

 
Facial Expression Analysis 

 
One of the most common subjects of study in computer vision and nonverbal communication is the 

human face. This is not surprising because human faces carry substantial information about human subjects 
and provide strong signals about their emotions, communicative intents, and state of mind. Computer vision 
techniques have many areas of application, including security, surveillance, data collection, and other 
routines that involve analysis of or interaction with humans. The approach has thus attracted researchers 
across many different disciplines. In particular, the automated analysis of facial expressions, which refers 
to facial motions or changes “in response to a person’s internal emotional states, intentions, or social 
communications” (Tian, Kanade, & Cohn, 2005, p. 247), is a well-studied topic in computer vision. 

 
Within computer vision, a commonly accepted coding scheme for classifying facial expressions is 

based on FACS developed by Ekman and Friesen (1976). FACS defines a list of elementary facial movements, 
called action units (AUs), that can be objectively measured for systematic analysis of facial expressions. 
Action units are also associated with specific facial muscle movements, making the coding system 
anatomically grounded. Many computational approaches have therefore focused on automatically classifying 
facial action units from either still images or dynamic videos (Baltrušaitis, Robinson, & Morency, 2016; Tian 
et al., 2005). 

 
Most automated systems for facial expression analysis involve three major steps. First, the system 

should detect (localize) a face from an input image. Then, the system extracts facial features, which describe 
the shape and appearance of the detected facial region. Finally, these data points are transferred to the 
classification module, which determines the presence or absence of each facial expression (e.g., an AU) in 
a given face. 

 
Emotion Recognition 

 
The problem of automatically inferring human emotions by recognizing facial expressions from an 

image or video recording also has been extensively discussed in the computer vision literature. As with facial 
expression analysis, the goal of emotion recognition is to assign an emotion category to a given facial image. 
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In the discrete approach to emotion research, human emotions are typically categorized into six “basic” 
emotions (i.e., happiness, sadness, surprise, anger, fear, and disgust; see Ekman, 1992), along with neutral 
affect. 

 
Whereas facial expressions describe visible facial appearances and motions without subjective 

interpretation (e.g., raised eyebrows), inferred emotional states refer to the psychological orientation of the 
target individual. These states are often revealed by facial manifestations, such as muscle movements, head 
orientation, visibility of upper or lower teeth, and other indicators. Although facial expressions and emotions 
are different concepts, the same computational method can be used for both tasks; that is, emotional states 
can be estimated from the same set of facial features used for facial expression classification. In many 
studies, facial expressions and inferred emotional states are computed together in the same analytical 
pipeline (Benitez-Quiroz, Srinivasan, & Martinez, 2016; Joo et al., 2014) as they can share the same facial 
features. 

 
Automated Coding of Televised Leader Displays 

 
The goal of this study was to demonstrate the utility of new computational tools for nonverbal 

behavior analysis. Coding of the first U.S. presidential debate of 2016 was performed manually at 10-second 
intervals to generate a broad set of nonverbal, tonal, and verbal variables using the ethological approach 
mentioned above (see Bucy et al., forthcoming). In this analysis, we limited our focus to the candidates’ 
nonverbal behavior and used the data from manual coding to train and validate our machine learning model. 
The trained model attempted to automatically replicate the manual coding for any given debate interval. 
Below, we describe the data collected for the study, variables used in the analysis, and methods employed 
to accurately detect candidate behavior from the debate video. 

 
Data: Manual Coding Categories and Definitions 

 
Consistent with a biobehavioral approach to nonverbal communication (see Bucy, 2017; Masters 

et al., 1986), the first Trump–Clinton debate was coded for nonverbal behaviors associated with leadership 
and contests for social dominance. Behaviors of interest were selected based on demonstrated influence in 
previous studies (Bucy, 2017; Bucy et al., forthcoming; Shah et al., 2015, 2016) and significance as 
communicative cues (Bucy & Stewart, 2018; Gong & Bucy, 2016; Stewart, Salter, & Mehu, 2009), given 
their capacity to convey a wealth of social information and account for a meaningful amount of variance in 
vote choice, particularly for undecided voters (see Olivola & Todorov, 2010). Chief among these are 
competitive and affiliative facial expressions and demonstrative body language or gestures. 

 
From an ethological perspective, four categories of leader displays are of particular consequence 

for social organization and hierarchy maintenance: anger/threat, happiness/reassurance), fear/evasion, and 
sadness/appeasement (see Masters et al., 1986; Stewart et al., 2009). These dual terms describe the 
emotion expressed and intention signaled by the display. Anger/threat displays are characterized by lowered 
eyebrows, a staring gaze, the visibility of lower teeth, lowered mouth corners (frowning), facial rigidity, or 
lips that are tightly closed. Happiness/reassurance displays, on the other hand, feature at least one of the 
following: a smile with relaxed mouth position, the visibility of upper or both rows of teeth, nodding up and 
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down, brief eye contact to avoid staring, open or just slightly closed eyes, or “crow’s feet” wrinkles around 
the eyes. Other expressions are characterized by equally detailed criteria and have been documented 
elsewhere (see Bucy & Grabe, 2008; Grabe & Bucy, 2009). 

 
Following detailed coding criteria developed by Masters et al. (1986) and validated longitudinally 

over several election cycles (Grabe & Bucy, 2009), we coded gestures as body language that signaled affinity 
or defiance. Affinity gestures consisted of hand, body, or facial movements that suggest a friendly 
relationship or attempt at bonding between the candidate and the audience, opponent, or moderator. 
Examples include waving or giving a “thumbs-up”; winking or nodding knowingly to the camera, moderator, 
or other candidate; or using an open palm when referencing the audience or opponent (rather than a closed 
fist or pointed finger). Defiance gestures were coded as hand and arm movements that visually signaled 
challenge to or disregard for authority, belligerence to an adversary “out there,” or threatening or dismissive 
actions toward the opponent (Bucy et al., forthcoming). Examples include finger pointing, wagging, or 
shaking; making or brandishing a fist; shaking one’s head in disagreement or disapproval; prolonged stares; 
or other behaviors signaling aggression. 

 
Manual coding was conducted by two trained graduate student coders. Each had advanced methods 

coursework, was closely supervised during the coding process, and worked from detailed variable definitions. 
Primary coding was performed by a Chinese graduate student fluent in English but with little knowledge of 
or ideological investment in American politics, minimizing the possibility of partisan bias. The secondary 
coder for intercoder reliability was an American graduate student, but his only task was to double-code 10% 
of the sample for reliability purposes, and his coding was not used in the analysis. 

 
Primary coding involved documenting the presence or absence of each behavior of interest within 

each 10-second time interval throughout the debate, first for one candidate and then for the other. This 
process yielded 533 individual debate segments for both Trump and Clinton. The coding for this data set 
was conducted at a nominal level and did not produce durations of candidate behaviors; instead, manual 
annotations simply documented whether a given behavior was present or absent in a given time interval. 
Intercoder reliability for this manual coding of nonverbal behavior, reported elsewhere (see Bucy et al., 
forthcoming), ranged from 84% to 93% agreement, depending on the variable. 

 
To test the robustness of our approach, we coded for the presence of additional nonverbal 

behaviors, including neutral expressions (the absence of an affective display), candidate gaze direction 
(looking at the opponent, looking directly at the camera), display appropriateness (inconsistent, 
exaggerated, or arbitrary expressions), nonverbal dismissals (visual disagreement, disparagement, or 
disbelief; also, sweeping arm movements intended to wave off or wave away the opponent), nonverbal tics 
(lip moistening and other tongue shows, head bobbing, podium gripping, water drinking, and nose or mouth 
touching), eyebrow movements (brow raises, brow furrows), and degree of candidate agency or overall 
activity (combined intensity of physical movement). We also coded for interruptions given that they involve 
intensive mouth movements and visually measurable gestural interjections. A brief summary of each 
measured behavior is listed in Table 1.2 

 
2 A detailed list of all coding definitions is available from the authors. 
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These manually coded behaviors were used to train our automated classifier, which were then 

applied to uncoded data to generate machine coding. We elaborate the method and procedure in the 
following section. 

 
Method: Recurrent Neural Network With Face and Body Features 

 
Feature Extraction 

 
Our automated coding system consisted of two parts: feature extraction and classification. These 

two steps can be combined, but we used separate modules for a clearer interpretation. For each frame in 
the input video, we first used OpenFace (Baltrušaitis et al., 2016), an off-the-shelf open source library, to 
extract features from the candidates’ faces. OpenFace was developed to facilitate research in facial behavior 
analysis and supports many functions, including facial landmark (key point) detection, head pose estimation, 
eye gaze detection, and facial action unit classification. Figure 1 shows a screen shot using OpenFace on 
our debate video, revealing detected features from the two candidates. 

 

 
Figure 1. A screenshot from OpenFace showing facial landmarks,  

head orientation, and eye gaze. 
 
We also classified facial action units (AUs) from each detected face by OpenFace. Detected results 

are shown in Figure 2. We retrieved two different types of AU predictions: (1) the presence of each AU 
(binary) and (2) its intensity (numeric). We included both terms in our final classification module. AU 
prediction is a challenging task and can produce inaccurate classification results. Also, because candidates 
in presidential debates are shown speaking, it is sometimes difficult to identify whether features such as 
parted lips or an open mouth should be interpreted as a signal of certain emotions or expressions (e.g., 
anger or happiness) or are simply because they are speaking. Therefore, we did not make any inferences 
directly from detected AUs, instead using them as features for the subsequent classification. The actual 
semantics of such facial features were automatically discovered during the training process in the 
classification module. Figure 2 shows cropped faces of both candidates with facial AUs detected by OpenFace. 
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Figure 2. Cropped faces with facial action units (AUs) detected by OpenFace. 

 
Humans also use fluent body gestures along with facial expressions in nonverbal communication 

(Joo et al., 2014), behavior that can be automatically coded by the computer vision technique of pose 
estimation. Specifically, we used OpenPose (Cao, Simon, Wei, & Sheikh, 2017; Simon, Joo, Matthews, & 
Sheikh, 2017) to detect a person in each frame of the video and the locations of 25 body joints including 
face, arm, hand, and fingers. OpenPose is another publicly available library that can be used for pose 
estimation from images or video recordings and is based on convolutional neural network techniques. Figure 
3 shows examples of candidate hand gestures captured in both frames. 

 



4054  Jungseock Joo, Erik P. Bucy, and Claudia Seidel International Journal of Communication 13(2019) 

 
Figure 3. Screen captures illustrating body pose estimation using OpenPose.  

 
Visual Code Classification 

 
After the feature extraction step, our system fed the features obtained at each frame of the video to 

our classification module, which produced the final coded behavior outputs. In this study, we used a recurrent 
neural network (RNN) with long short-term memory (LSTM) units (Hochreiter & Schmidhuber, 1997), which has 
been a popular method for video recognition in the computer vision literature to classify the final outputs. 

 
RNNs are a special form of neural network with a cyclic connection. They are commonly used for 

sequence data, when there exists internal dependency between elements in the sequence. For instance, a 
text sentence is a sequence of words in which arrangement of the words is critical to understand the meaning 
of the entire sentence. An RNN maintains its internal state while processing the whole sequence, allowing it 
to leverage the context between elements. RNNs also allow inputs of variable lengths, such as sentences 
with different numbers of words, without changing the model structure. Of course, these are both important 
properties when dealing with video input because video recordings consist of a sequence of frames, 
temporally connected. 

 
Specifically, an RNN is an iterative function that takes an input sequence and updates its internal 

states. Let 𝑥" be the input vector at time 𝑡 and ℎ" be the internal (hidden) state vector at time t. In our 
experiment, the dimension of the hidden state was set to 64. At each time step 𝑡, an RNN, 𝑓, updates states 
as follows: 

 

ℎ" = 𝑓(𝑥"(), ℎ"()), 𝑡 ∈ {0, 1, 2, . . . . 𝑇 − 1}, 
 

where 𝑇 denotes the number of elements in the input (e.g., the number of frames in a video); ℎ" is the 
output at each time step, and ℎ5() is the last output computed. The initial state of the model, ℎ6, is set to 
zero at the beginning. The exact function 𝑓 in our model is an LSTM. LSTMs have an additional state variable, 
called a cell state. The cell state maintains specific information that needs to be kept while processing the 
whole sequence and the LSTM controls when the information needs to be updated. This feature is useful 
when modeling data with a long-term dependency. At the last time step, the hidden states (ℎ5()) are used 
to generate the predicted coding values through a linear combination. 
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Figure 4. Our model, a recurrent neural network with long short-term memory (LSTM), 
processes a sequential input (facial and body features) computed from video frames. 

 
As illustrated in Figure 4, our model started by taking the first frame of the input video clip. The actual 

input was the feature vector obtained by OpenFace and OpenPose. As the model proceeded through time steps, 
it updated internal hidden and cell states. These states’ values were stored and passed to the computation for 
the next time step. The states were then combined with the feature vector from the next frame and the model 
continues updating the states. This repeated until the model finished computations for all elements in the entire 
sequence, and the final outputs were computed based on the last values in the hidden state: 

 

𝑦 = σ(ℎ5() ⋅ 𝑤	 + 	𝑏), 
 

where σ(𝑥) is a sigmoid function whose output value ranges from 0 to 1, 𝑤 is a weight vector, and 𝑏 is a bias 
term, which are learnable parameters of the model. 

 
Model Training 

 
The annotations used in training were made for each 10-second time window, which resulted in 533 

time intervals for the entire debate duration. Such resolution, considered coarse from a computer vision 
standpoint, was necessary to synchronize the machine coding with the original manual coding of the debate. 
We next randomly divided the entire data set into a training set (80%) and validation set (20%). The training 
set was used during training, and the validation set was excluded as this should be used to measure the 
classification accuracy of the model. The training was conducted by a popular optimization method by Kingma 
and Ba (2014) called Adam for three epochs3 for each code separately. 

 

 
3 One epoch means using every data instance in the training set once. 
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Results 
 
For reliable measurement of accuracy, we performed 10-fold cross validation and report the accuracy 

by the area under the receiver operating characteristic curve (AUC). The AUC is a standard measure of binary 
classification accuracy commonly used in machine learning, ranging in value from 0.0 (worst classifier) to 1.0 
(perfect classifier). A value of 0.5 indicates the classifier is uninformative for the given task. Table 1 shows the 
means and standard deviations of AUCs for each variable obtained from the cross validation. 

 
Table 1. Classification Accuracy for Automated Coding of Candidate Nonverbal Behavior. 

 Clinton Trump  

Coding M SD Frequency M SD Frequency Behavior definition 
Look at .960 .018 .511 .909 .025 .640 The candidate in the 

reaction shot looks at 
the speaking 
candidate. 

Brush off .774 .037 .126 .801 .053 .083 The candidate in the 
reaction shot visually 
brushes off the 
opponent. 

Disagreemen
t 

.892 .045 .096 .907 .017 .706 The candidate in the 
reaction shot displays 
nonverbal 
disagreement. 

Look into 0.937 0.011 0.677 0.830 0.040 0.800 The candidate looks 
directly into the 
camera (i.e., breaks 
the “fourth wall”). 

Eyebrow 0.911 0.026 0.326 0.754 0.052 0.913 The candidate 
displays noticeable 
eyebrow movement. 

Angry face 0.847 0.051 0.130 0.912 0.035 0.585 The candidate shows 
an angry/threatening 
facial expression. 

Happy face 0.880 0.014 0.506 0.841 0.041 0.089 The candidate shows 
a happy/reassuring 
facial expression. 

Sad face 0.776 0.034 0.017 – – 0.000 The candidate shows 
a sad/appeasing facial 
expression. 
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Neutral face 0.836 0.025 0.345 0.881 0.043 0.292 The candidate shows 
a neutral facial 
expression. 

Affinity 
gesture 

0.821 0.047 0.066 – – 0.000 The candidate uses 
any affinity gesture.  

Defiance 
gesture 

0.745 0.039 0.098 0.833 0.033 0.334 The candidate uses 
any defiance gesture. 

Agentic 
gesture 

0.991 0.010 0.489 0.939 0.006 0.613 The candidate 
engages in an 
“agentic” style of 
behavior. 

Wave off 0.906 0.039 0.370 – – 0.000 The candidate “waves 
off” the opponent 
with a dismissive 
hand and arm swipe. 

Tic–lip 0.736 0.042 0.149 0.771 0.055 0.136 The candidate 
moistens his/her lip.  

Tic–bob 0.855 0.047 0.149 0.713 0.097 0.117 The candidate bobs 
his/her head. 

Tic–grip 0.863 0.071 0.004 0.821 0.048 0.547 The candidate grips 
the podium.  

Tic–drink – – 0.000 0.952 0.040 0.026 The candidate drinks 
water. 

Tic–touch – – 0.000 0.691 0.049 0.040 The candidate 
touches his/her nose 
or mouth.  

Interrupt 0.866 0.185 0.023 0.647 0.059 0.094 The candidate in the 
reaction shot 
attempts to interrupt 
the speaking 
candidate.  

Note. Blank fields indicate that the candidate did not exhibit the behavior according to the manual coding. 
 
 
Overall, the accuracies average 0.825 for Trump (range = 0.646 to 0.952) and 0.858 for Clinton 

(range = 0.774 to 0.991), showing better than chance classification (0.500). The best performing variables 
for both candidates were looking at the opponent (look at) and overall agency, or level of activity (agentic). 
Specific facial expressions were far easier for the classifier to recognize for Trump than for Clinton, who was 
much less expressive throughout the first debate (see Bucy et al., forthcoming). Other notable discrepancies 
in classification occurred for instances of nonverbal disagreement (labeled disagreement) and evocative 
gestures (labeled affinity gesture, defiance gesture) when, again, Trump was much more demonstrative 
than Clinton in his nonverbal behavior. Interestingly, the classifier was better at recognizing Clinton’s affinity 
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gestures and Trump’s defiance gestures, suggesting that a candidate’s preferred or more natural mode of 
communicating—agreeableness for Clinton, hostility for Trump—was more reliably recognized. 

 
The analysis also revealed certain behaviors performed by one candidate but not the other. Ever 

defiant and menacing, Trump did not show any sadness/appeasement (e.g., lowered mouth corners, head 
turned down toward body, averted eye orientation) that was coded by annotators. And, despite his wealth 
of gesturing, Trump did not engage in any waving off of his opponent with a dismissive hand or arm swipe 
through the air, a signature expression of Clinton’s extending back to her 2016 presidential primary debates 
against Bernie Sanders. Clinton also did not reach for a glass to drink water at any time during the first 
debate (tic–drink), whereas Trump did on several occasions. 

 

    
Figure 5. The left panel shows frames with Trump’s facial expressions misclassified as “happy” 
(false positives). The right panel shows frames of Trump smiling while listening to Clinton, more 
accurately classified as “happy” (true positives). 

 
External Validity and Generalizability 

 
Another important criterion in model validation is to assess how well it can generalize to new, 

unseen data. Given that our data set consisted of only two individuals, it is difficult to demonstrate that the 
model can generalize to other politicians because their debate styles and nonverbal gestures may vary 
significantly. Therefore, we tested the generalizability of our approach using a publicly available data set of 
facial images with labels on emotions. 

 
Specifically, we trained a facial expression classifier using a public face data set, called Expression-

in-the-Wild (Z. Zhang, Luo, Loy, & Tang, 2015), which contains 91,793 faces. This classifier takes a facial 
image as input and determines the present expression in relation to seven discrete emotional displays: 
angry, happy, sad, fearful, disgust, surprised, and neutral. Here, we used a convolutional neural network 
(CNN), which takes an individual image as input rather than a video. This classifier was not trained on any 
part of our debate videos or the annotations made on them, so we could measure the generalization 
performance by applying it to our debate data for the variables related to facial gestures. Because the model 
processes each image (i.e., frame) independently, we applied the model to every frame and computed the 
average score within a 10-second time interval for each emotion category to make it comparable to our 
manual coding data. We used the four categories that overlapped in our data set: angry, happy, sad, and 
neutral. 

 
Table 2 presents the classification accuracy. This analysis reveals several important findings. First, 

the classifier correctly classified the facial expressions of Trump and Clinton, despite not being trained on 
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either person. Second, compared with our original method based on RNN and LSTM, the face-based classifier 
achieved higher classification accuracy for Clinton but weaker results for Trump. Several possibilities could 
explain this. For example, Clinton’s face might display expressions and emotions that are more commonly 
found among the people in the Expression-in-the-Wild data set, or Trump’s face might show more unique 
characteristics specific to Trump. 

 
Table 2. Classification Accuracy of a Face-Based Classifier Trained From an External Database 

(CNN) and Our Video-Based Classifier Trained on Our Data (RNN). 

 Clinton Trump 

Variable RNN (video) CNN (image) RNN (video) CNN (image) 

Angry face .847 .865 .912 .697 

Happy face .880 .947 .841 .670 

Sad face .776 .846 – – 

Neutral face .836 .688 .881 .600 

Note. CNN = convolutional neural network; RNN = recurrent neural network. Bold font indicates better 
classification accuracy. 

 
Classification accuracy can be also influenced by the temporal coherence and continuity of facial 

expressions. For instance, we found that this image-based “happy” expression classifier was sometimes 
triggered by false positives for Trump when he was speaking (see Figure 5) because his face exhibits features 
consistent with smiling, such as a wide-open mouth. Because most facial image databases consist mainly 
of posed still photographs, the classifier may not be able to recognize that the person is speaking and thus 
his mouth is open. In this case, a video-based approach can help distinguish between a real smile and 
momentary activation of smile-like features. In addition, we found that Clinton smiled much more frequently 
than Trump during the debate. Trump smiled very infrequently, using his smile only in attempts of “laughing 
off” allegations made by Clinton.4 

Interpretability 
 
Automated approaches, especially when using a model with many internal parameters (i.e., deep 

learning), are often criticized for the difficulty of understanding their internal mechanisms, although the 
huge number of parameters can also help them achieve a better accuracy and expressiveness. Model 
intelligibility is indeed an important desired property to communication scholars who wish to identify fine-

 
4 Peak moments from the happiness/reassurance facial expression classification for Trump coincided with 
these four comments made by Clinton during the debate: (1) “I call it Trumped-up, trickle-down.” (2) “He 
owes about $650 million to Wall Street and foreign banks.” (3) “Donald publicly invited Putin to hack into 
Americans’ [computer accounts].” (4) “He said, ‘You know, if they taunted our sailors, I’d blow them out 
of the water and start another war.’” 



4060  Jungseock Joo, Erik P. Bucy, and Claudia Seidel International Journal of Communication 13(2019) 

grained elements of nonverbal behaviors or understand which feature set is more important for the model 
to classify the behavior type rather than simply predict outcome variables. To mitigate the problem and help 
researchers better understand how the model performs internal computations, we visualize the feature 
importance of our anger/threat classifier for each candidate in Figure 6. 

 

 
Figure 6. Feature importance for angry/threatening classification of Trump (left) and Clinton 
(right) computed and visualized by the gradient of the model output with respect to the features. 
The size of each point indicates the magnitude of the gradient. 

 
 
The importance of each facial landmark was computed by the magnitude of the model output 

gradient with respect to each landmark’s position. In this example, we see that Trump used more focused 
movements of individual facial components such as his eyes and mouth to signal anger, whereas in Clinton’s 
faces, the weights are more distributed across many points, suggesting that her anger displays were more 
restrained or expressed by nonfacial features such as body movements. These types of diagnostic techniques 
can shed new light on the complex, continuous nature of nonverbal expressions and offer insight into the 
fine-grained characteristics of political display behavior beyond what manual coding can identify. 

 
Conclusion 

 
As this analysis has shown, our automated classifier is effective at categorizing a range of candidate 

nonverbal behavior at a rate that far exceeds chance. All 20 behaviors tested from the first presidential 
debate of 2016 were classified with accuracies in the 65% to 99% range (M = 84.2, SD = 8.3). Importantly, 
most of these nonverbal behaviors were either ambiguous in nature or required some rhetorical context to 
accurately classify. Nevertheless, the vast majority of cases were correctly classified, and at a high rate of 
accuracy, demonstrating the utility of our approach. To enhance the precision of classification in subsequent 
studies, manual coding at an even finer grained level (e.g., 1-second intervals) may be necessary to achieve 
a more sensitive set of training data. 

 
Indeed, a limitation of the current analysis is the relatively coarse 10-second unit of observation. 

Manually documenting candidate behavior at 10-second intervals represents an improvement over 30-
second segments used in previous manual coding research but is still an imprecise index of human behavior. 
In any given 10-second time increment, a candidate may exhibit a variety of expressive displays, whether 
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emotions of anger and happiness or gestures of affinity and defiance, within this span of time. Moreover, 
most facial gestures or expressions do not persist for very long. Emotions or gestures that punctuate 
statements, for instance, may present for only a half second, or even less, and then disappear. 

 
A more granular annotation set with expressive displays manually coded at a rate of once per 

second would greatly improve the trained models’ accuracy. However, this added precision would 
significantly increase the amount of time and resources required for annotation. As with any complex and 
novel research endeavor, there are trade-offs inherent to the process, in this case, having some reliable 
human coding of an entire presidential debate versus more precise ground truth of a much shorter duration. 
As an initial demonstration of the technique, the existing annotation set (even at 10-second intervals) serves 
the purpose of the experiment and shows the utility of the new method. 

 
Ultimately, the ability to automate coding of televised nonverbal behavior should present new 

research possibilities, allowing more rigorous description and testing of nonverbal behavior and visual 
elements of news. The precision offered by automated coding should bring insights that were not evident 
before. As the small data of manual coding give way to the big data of automated analysis, scholars should 
also be able to develop norms for political communication performances across different settings and 
contexts. Once established, a more precise form of discrepancy analysis may be performed on whether 
candidates are communicating, say, within or beyond the average range of typical political display behavior, 
and how these fluctuations and norm violations affect audience response. Would a violation, say, 30% 
outside the norm for certain settings elicit negative viewer reactions, or would it take a more egregious 
violation for the audience to react punitively? Are there differences for male and female candidates, older 
versus younger contenders, or establishment versus “populist” campaigners? Automated coding could 
provide systematic guidance on political performances that, thus far, have been assessed either 
impressionistically or through the small N of hand coding that cannot keep pace with today’s fast-moving—
and increasingly visual—media environment. 
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