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Communication research has long built time into its conceptions of influence. Yet, relative to allied 

fields, ours has not been especially advanced about explicating time’s functions theoretically or empirically 
(Yanovitzky & VanLear, 2008). To be sure, solid research examining temporal dynamics has been present 
for decades: See the cross-lagged correlations of early agenda-setting research and its refinements 
(McCombs & Shaw, 1972), multidose priming studies (Iyengar & Kinder, 1987), modeling opinion dynamics 
using overtime shifts in news content (Fan & Tims, 1989), and rolling cross-sectional analyses of opinion 
(Johnston, Blais, Brady, & Crete, 1992). But more often, time has been set aside for the limitation section 
of cross-sectional studies. 

 
Today, we stand on the cusp of a new phase in our field’s opportunities to incorporate temporal 

dynamics into research, which is a product of two advances. One is the development of computational social 
science (Lazer et al., 2009), and more specifically computational communication science techniques for 
generating sequential data (Shah et al., 2016). The emergence of these computational research techniques 
alongside novel sources of data and methods has opened new frontiers for examining a variety of 
communication dynamics in fine-grained temporal detail. Second, in recent years, communications scholars’ 
awareness of and borrowings from other fields with expertise in modeling temporal dynamics have grown 
greatly. At the intersection of these developments is a burgeoning domain we call computational 
communication science using time series analysis. 

 
The aim of this article is to (a) synthesize the work linking computationally generated data streams 

with other temporal data, (b) specify appropriate techniques for the analysis of this data, (c) draw attention 
to challenges in these processes, and (d) provide resources for scholars wishing to learn more about these 
intersecting approaches. The article is divided into four sections. In the first, we present theoretical 
considerations explaining why time is conceptually important to communication research, both historically 
and today; the second is an overview of pioneering research in computational communication science 
employing time series modeling; the third offers a narrative account of two research programs in this area; 
and the fourth includes greater detail about relevant time series analysis techniques. We conclude by 
returning to the promise of merging computational approaches with time series analytic techniques. 

 
I. Time in Communication Research 

 
Time, Process, and Causation 

 
Many of the major theories and models in our field contain time as a central player: the two-step 

flow, cultivation, spiral-of-silence, agenda-setting, framing, and communication mediation models, to name 
a few (Nabi & Oliver, 2009). Each articulates a set of processes that play out in time: Messages work their 
way through media systems and networks, citizens perceive the world around them and decide to 
communicate, or not, and they make choices about participation, presumably as a product of a process that 
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includes communication exposure. Indeed, the words that animate our field—effect, flow, influence, 
dynamic, cycle—reveal our understanding of communication as a process, and processes have temporal 
dimensions (Box-Steffensmeier, Freeman, Hitt, & Pevehouse, 2014). The perspective of time series analysis 
can help expand our notions of time’s role in these dynamics. We see several ways in which we can become 
more attentive to time in our field. 

 
Though we often obscure it, many of communication’s major models are causal in nature. Students 

learn to think through establishing causality by identifying correlations, accounting for covariates, and 
determining temporal order. Until recently, the last of these has often been the most difficult to establish. 
With the spread of computationally derived data sets and advanced time series modeling techniques, this is 
sure to change, intensifying our need to remain aware of the other assumptions built into research of this 
kind. As we take advantage of these tools, we must be careful not to reduce our theoretical vistas to 
reductive causal stories. Responding to this tendency, Lang and Ewoldsen (2010) write, 

 
If, as a discipline, we continue the habit of thinking that scientific, quantitative research 
in communication must be focused on effects, we will never begin the complex and 
necessary work of theorizing about long-term, systemic, complex, dynamic, interactive 
processes that make up the science of how communication works. (p. ) 
 

A more expansive conception of time is essential to understanding the dynamic processes that connect the 
communication system. 

 
Further, most models are conceived in terms of the simplest causal temporality—linearity—which 

is often a usefully parsimonious, if narrow, starting point (Hindman, 2015). More sophisticated time series 
techniques can help us test and inform other theoretical ideas about how dynamics play out. Some may not 
be linear, but instead rely on an accumulated effect over time (as cultivation theory postulates); many 
effects have some kind of decay function by which they disappear, a tendency often absent from 
communication theories (cf. Fan, 1988). Still other effects may not manifest immediately, only appearing 
after time passes, and yet others may require surpassing a threshold to manifest (Gotlieb, Scholl, Ridout, 
Goldstein, & Shah, 2017). 

 
Another temporal simplification is an assumption of temporal stability: that effects play out at a 

steady rate at different moments in time. Regression-based time series analysis makes this assumption in 
the sense that it averages across all time points as though they were the same. In reality, not all time is 
created equal: As Dayan and Katz (1992) demonstrated decades ago, media events are extraordinary 
moments that attract disproportionate attention and effects, even in the digital age (e.g., Shah et al., 2016). 

 
If a study involves aggregating data that were collected over time while neglecting the role of time, 

a large volume of data generated in short and intense periods may overshadow the patterns from the 
nonintense moments. Studies of presidential debates or election seasons have often justified themselves on 
the basis of this intense attention, but the notion of differentially important time plays little role in theoretical 
models. In addition, communication has not done an adequate job of considering how dynamics change at 
different phases in a process, such as during different segments of a debate or between the primary and 
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general elections campaign. Here, communication may take inspiration from punctuated equilibrium theory’s 
(True, Jones, & Baumgartner, 1999) call to distinguish moments of stability from those of rapid change; the 
notion of media storms having unique properties and unique effects is a helpful step in this direction 
(Boydstun, Hardy, & Walgrave, 2014). 

 
Complexity and Instability, Unpredictability and Instantaneity 

 
We must also remain aware of the many ways in which time’s place in communication, and in 

society, is becoming more complicated. Sociologists of the last two decades have described the changing 
nature of time resulting from the conditions of postindustrial, digitally networked society. Whether “liquid 
modernity,” “timeless time,” or “time-space distanciation,” these notions assert that individuals and social 
practices are being forced to adapt to communication processes approaching instantaneity. Moreover, 
people at different locations within the network society vary in their ability to adapt to, and benefit from, 
these new conditions (Castells, 2010). These are dynamics that directly impact the lived experiences of 
creators and audiences of communication and shape the practice of communication itself. 

 
Chadwick’s (2017) is one of the richest articulations of the implications of time’s new nature for 

political communication. His “political information cycle” makes clear that politics can now play out in near 
simultaneous real time, incorporating myriad actors who emerge from unexpected corners of the hybrid 
media system. When combined with time-stamped digital media artifacts, time series analyses offer 
techniques for studying behaviors that occur in micro-increments of seconds or milliseconds, though the 
simultaneity and complexity of the contemporary media system may defy untangling. 

 
This spontaneity and unpredictability challenges theories of regularity and routinization. Today, 

news comes out all the time at a relentless pace and is immediately met with responses by a wide range of 
communicative actors. Yet, our theoretical frameworks—as well as our often regression-based empirical 
techniques—are only beginning to come to terms with this complexity (Karlsson & Strömbäck, 2010). 

 
We present these considerations as a call for communication scholars to attend to matters of time 

more conscientiously in both theory and method and to encourage empirical modesty as we exploit new 
tools for measuring and modeling communication dynamics. 

 
II. Time Series and Computational Methods in Communication Research 

 
A time series is a way of indexing or graphing data in temporal order, creating a sequential pattern 

of the level of a given variable over time. Units of time vary widely—from milliseconds in some physiological 
research to years or decades in analyses of systemic social or media change. As noted earlier in the article, 
time series techniques have been present in our field for decades, but have only recently become common 
in communication research training. Today, with the development of computational communication science 
techniques to generate sequential data, the use of time series techniques is rapidly expanding. By 
“computational” research, we refer to data collections and analytic techniques that (1) generate or use large, 
complex databases, (2) involve computing variables from trace data available through social media, mobile 
devices, or other digital databases, and (3) often use machine or algorithmic solutions to generate patterns 
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and inferences from these data (Shah, Cappella, & Neuman, 2015). More detail on the unique properties of 
temporally ordered data is offered in Section IV and supplementary materials.2 

 
Further, data created through “always on” (Salganik, 2017) computational processes frequently 

include records of the time of creation. Unlike data collection from the prior era, where the main source of 
data was one-time responses to a survey, interview, or experiment, digital trace data inherently lend 
themselves to time series analysis. Increasingly, that synthesizes multiple forms of data—for example, event 
data, news coverage, public opinion, and/or social media texts—into a unified data set amenable to new 
forms of modeling. 

 
In this section, we present an overview of ways in which computationally collected or derived data 

are being used within time series techniques (see Table 1 and discussion below). Though space constrains 
us from comprehensively treating the computational approaches mentioned here, more detail on them can 
be found in the article’s supplementary materials. 

 
Table 1. Illustrative Uses of Computationally Derived Data Sets in Time Series Analysis. 

Media/Event data used Published works Data sources Analytic 
techniques 

News media (Associated 
Press) + public opinion data 

Fan & Tims (1989) Nexis Ideodynamic model, 
computer-assisted 
syntactical coding 

News media + social media 
(Twitter) 

Guggenheim, Mo Jang, 
Bae, & Neuman (2015) 

Sysomos, Topsy Keyword proportion, 
Granger, VAR 

Conway, Kenski, & Wang 
(2015) 

Lexis, ProQuest, 
Twitter API 

Wordstat, 
correlation analysis 

News media + blogs + social 
media (Twitter) 

Neuman, Guggenheim, 
Mo Jang, & Bae (2014) 

Sysomos, Topsy VAR, Granger 

News media + partisan 
media + “fake news 
websites” 

Vargo, Guo, & Amazeen 
(2017) 

GDELT Automated content 
analysis, network 
analysis, Granger 

News media + social media 
activists + political leaders’ 
Twitter use 

Freelon, McIlwain, & 
Clark (2018) 

Twitter data 
purchase 

Hashtag counts, 
Latent Dirichlet 

allocation, Granger 

 
2 https://osf.io/dhb3q/?view_only=480a8981cfcf4094a8dba2425e2dbe99  
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News event (presidential 
debate) + social media 
(Twitter) 

Shah et al. (2016) C-SPAN, Twitter API Keyword counts, 
Granger, VAR 

Newspapers + search trends Boydstun, Hardy, & 
Walgrave (2014) 

Human collection of 
newspapers, Google 

Trends 

Human content 
analysis, univariate 
time series analysis 

Physiological + TV Soroka & McAdams 
(2015) 

Skin conductance, 
heart rate, TV news 

segments 

ANCOVA, OLS 
regression 

Online news (msm + niche) 
+ search trends 

Gruszczynski & Wagner 
(2017) 

MemeTracker, 
Google Trends 

VAR, Granger 

TV + public opinion Searles & Smith (2016) News Coverage 
Index, NAES 

VAR, Granger 

Newspapers + news events 
(death penalty) + public 
opinion 

Baumgartner, De Boef, & 
Boydstun (2008) 

Lexis, Gallup/Roper VAR, Granger, error-
correction models 

Democratization and 
communication technology 
diffusion 

Mays & Groshek (2017) Polity data series; 
World Bank, 
International 

Telecommunication 
Union data 

ARIMA, selected 
case study analysis 

 
Text as Data 

 
Within the field of communication, much of the innovation in computational time series research is 

occurring in the area of text processing; this is largely because computational tools enable the processing 
of the large volumes of text necessary for multi-timepoint analyses (Schwartz & Ungar, 2015). This 
possibility was emergent even 30 years ago, as Fan’s work on tracking change in media content using time 
series methodology and text-coding methods demonstrated (Fan, 1988; Shah, Watts, Domke, & Fan, 2002). 

 
Sometimes, time series analysis of text is conducted on text data as simple as the automated 

counting of keywords, phrases, and hashtags (Salganik, 2017). For example, Freelon, McIlwain, and Clark 
(2018) explore the prevalence of hashtags and keywords relevant to the Black Lives Matter movement, 
comparing their prominence to the attention devoted to police brutality in both the mainstream press and 
policy makers’ discourse. Early studies of social media response to presidential debates, discussed next, 
sought to understand what factors spurred Twitter users to mention candidates’ names during debates 
(Shah et al., 2016). 
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Variations on simple counts have served as the basis for more significant headway in the area of 
intermedia agenda setting. Neuman, Guggenheim, Mo Jang, and Bae (2014) derived topical keyword lists 
using open-ended responses to American National Election Studies surveys, then counted mentions of those 
issues from traditional media coverage, Twitter posts, blogs, and discussion board conversations to test how 
the dynamics of public attention differ across topics. Guo and Vargo (2018) measured the co-occurrence of 
candidate and topic-word mentions to derive the “issue ownership networks” of the 2016 U.S. presidential 
campaign. Modeling the shifts in those networks in different media over time offered insight into the agenda-
setting capacities of various media (see also Harder, Sevenans, & Van Aelst, 2017). Combining human 
content analysis of text with factor analyses conducted over time, Baumgartner, De Boef, and Boydstun 
(2008) automated the identification of issue frames and how they change over time. 

 
Machine learning and advanced natural language processing techniques have further increased 

the range of variables that can be derived from text data. These include classification tasks used to 
evaluate whether a text or speaker fits into a given category, such as “positive” or “negative,” “liberal” 
or “conservative” (see Petchler & Gonzalez-Bailon, 2015, for an overview). This makes it possible to 
analyze more complete concepts that do not rely on repeat uses of words or phrases (Grimmer & Stuart, 
2013). Once data are classified and labeled (e.g., for sentiment), they can be analyzed to see how 
discourse changes temporally (e.g., sentiment about a politician over the course of his or her term). 
Importantly, these data can then be combined with nontext data to understand the antecedents and 
consequences of language-in-communication. For example, researchers found a significant temporal 
correlation between tweet sentiment and Obama’s support rate during the 2008 presidential election and 
his job approval in surveys in 2009 (O’Connor, Balasubramanyan, Routledge, & Smith, 2010). 

 
Other studies have used unsupervised machine learning techniques to identify key issues in 

discourse and to analyze the presence (or absence) of topics over time. For example, Cerchiello and Nicola 
(2018) analyzed a corpus of economic news stories using structural topic modeling, an unsupervised 
machine learning strategy, and then used Granger causality tests to analyze the spread of financial news 
stories across different countries. In another analysis of economic news (but focusing on stock markets), 
Strycharz, Strauss, and Trilling (2018) found that certain topics positively Granger-caused stock price 
fluctuations. 

 
Multiple computational text analysis tools can be used to extract different types of information from 

text. Freelon et al. (2018), for example, used both a keyword strategy and topic modeling. Strycharz et al. 
(2018) used both Latent Dirichlet Allocation (LDA) topic modeling and sentiment classification to understand 
news about stock markets. These studies show that time series methods can be used to analyze different 
layers of text data, enhancing the analytical use of computationally analyzed text. 

 
Physiological Measures 

 
Longitudinal studies of human physiological response to communication stimuli have constituted 

another area of growth. Affordable data acquisition systems allow researchers to collect continuous 
responses such as electrodermal activity and facial electromyography by the millisecond, making time series 
tools useful (Ravaja, 2004; Soroka & McAdams, 2015; see also Lazer et al., 2009). 
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Networks and Connections 
 
In network analysis, although researchers have acknowledged that the composition and structure 

of networks may change over time, they have typically ignored the temporal dynamics when the network 
process is in a steady state (Borge-Holthoefer & Gonzalez-Bailon, 2017; Snijders, 2005). However, a myriad 
of digital trace data coming from online forums, e-mail, and social media provide not only information about 
the relationships of the interaction, but also moment-by-moment time stamps (Lazer et al., 2009). In 
addition, the speed of online communications, such as the emergence of memes (Weng, Menczer, & Ahn, 
2013), mass protest organized with mobile interactions (Chan & Fu, 2017), and a real-time response from 
social media to a televised national event (Shah et al., 2016), can accelerate the rate of change in network 
topology. Computational social scientists suggest inspecting time-evolving networks by incorporating more 
sophisticated methods, such as temporal exponential random graph models, stochastic actor-based models, 
or continuous-time Markov chains, or simply providing multislice representations of networks (Borge-
Holthoefer & Gonzalez-Bailon, 2017). 

 
Despite the diversity of time series applications by political communication scholars, the 

methodological literature remains sparse. We believe that more concerted attention to time series methods 
within communication is essential for working with rich, finely grained data with increasing temporal 
specificity. More guidance on best practices to guide data set construction, analysis, and modeling will help 
to advance this field. 

 
III: Doing Computational Communication Research Using Time Series 

 
Here we offer narrative accounts of the development of two research programs, while referring 

readers to published articles for fuller explication and project details. 
 

Presidential Debates and Social Media Response 
 
In 2012, our team at the Mass Communication Research Center at the University of Wisconsin–

Madison began archiving tweets from Twitter’s “gardenhose” streaming API. Observing the granularity of 
time and content present in millions of tweets time-stamped to the second, we began exploring possibilities 
of connecting social media activity to other events in the political-media system. Initial analyses assessed 
the response generated by Obama and Romney on Twitter during the first presidential debate of 2012 by 
breaking the 90-minute event into 30-second increments and measuring counts of mentions of each 
candidate’s name during each period alongside assessment of partisan alignments and polarization (Hanna 
et al., 2013). 

 
Next, to analyze why social media response varied during the debates, a team led by Erik Bucy 

at Texas Tech conducted an extensive human content analysis of the debate, using the split-screen 
presentation broadcast by C-SPAN. Coding assessed candidate statements, tone, gestures, and facial 
expressions during each 30-second block. These data were merged with two series of Twitter response, 
one a raw count of candidate mentions, and another a supervised machine learning sentiment analysis of 
those tweets. Time series analysis, particularly VAR, Granger causality tests, and Prais–Winsten 
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estimation, enabled us to assess the relationships among these series (Shah et al., 2016). The result 
demonstrated the “biobehavioral” nature of social media response: Volume of debate discussion on 
Twitter was strongly driven by facial expressions and gestures of the candidates, while word choices and 
policy statements had little effect. A follow-up study (Wells, Thomme, et al., 2016) partially disaggregated 
the Twitter “public” to distinguish the behavior of “elite” (journalists, party leaders) and “average” users 
and offered a cross-national comparison between the United States and France. That analysis revealed 
the additional role of elite opinion leaders in shaping real-time Twitter users’ experience of the debate. 

 
Studying phenomena playing out in the span of 30-second periods introduced data-alignment 

challenges. To know how Twitter messages related temporally to coded moments in the debate, our team 
aligned Twitter data to the C-SPAN video based on several key moments of the debate, such as the starting 
moment of the debate and specific questions from the moderator. Although not everyone watched the 
televised debate at the exact moment given different broadband speeds or broadcasting delays, a large 
volume of Twitter responses was key to aligning the different data sets because it provided an indicator of 
real-time attention with the lags built into social media response. As this suggests, establishing clear criteria 
on which to synchronize often relies on establishing time lags within these sorts of time-stamped data from 
different sources. 

 
The Hybrid Media System and the 2016 Election 

 
The ubiquity of social media in the 2016 presidential primaries spurred many questions about the 

relationship between social and traditional media, especially given Donald Trump’s success in using Twitter 
to shape the national conversation. Accordingly, we conducted a series of studies examining news media 
attention directed at Donald Trump during the presidential primaries in 2015–2016. Building on the 
experience using time-organized social media data, we (Wells, Shah, et al., 2016) assembled a wider and 
more varied data set to account for the factors that might lead to news media attention of a renegade 
candidate. The data set included social media (Twitter) data (that is, tweets from Trump and retweets of 
him); news media coverage of Trump, operationalized as counts of articles mentioning the candidate two or 
more times; and several other campaign variables, including debates, rallies, interviews, and media 
appearances. 

 
Time series analysis was essential to understanding these series’ relationships. Because news 

media and social media attention are often responsive to one another, it was particularly important to 
disentangle the temporal relationships among these series. Indeed, we found these to be highly correlated, 
speaking to the overall unity of the larger media system. Granger causality tests helped establish that social 
media buzz about Trump (in the form of retweets of him) tended to anticipate news media coverage more 
than the reverse. 

 
IV. Time Series Techniques in Communication Research 

 
Until now, we have described how techniques combining computational communication science 

with time series analysis can enrich the study of communication phenomena. Next, we review some 
techniques of time series analysis. Our purpose is not to offer instruction in the use of these techniques (see 
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this article’s supplementary materials for references to technical sources3), but rather to identify concepts 
that any scholar wishing to investigate social processes will need to be familiar with. We hope that this 
section will provide readers with a working knowledge to understand existing studies and begin to 
contemplate conducting their own time series analyses, even those without an extensive background in 
regression methodology. 

 
Foundations of Time Series 

 
Modern time series techniques were synthesized and popularized in the social sciences by Box and 

Jenkins (1976). The key insight of the Box–Jenkins modeling approach is that researchers must apply 
various statistical filters to a univariate time series to ensure that the variance explained in regression 
models represents the social process of interest rather than a statistical artifact. For example, if the stories 
a journalist covers today are influenced by what stories he or she published yesterday, then some portion 
of the variance in a time series of that news coverage will simply be explaining itself, rather than an 
independent variable(s) of interest. 

 
The Box–Jenkins approach accounts for these self-driven processes by decomposing individual time 

series using a set of statistical tools to diagnose the types and extent of temporal dependency. Typically, 
the first tool is a set of correlograms that plot the autocorrelation function (ACF) and the partial 
autocorrelation functions (PACF) of the time series. These plots form the basis for identifying one, or a 
combination of, three possible processes: autoregressive (AR), moving-average (MA), and/or integration 
(I). The resulting models, known as autoregressive integrated moving-average (ARIMA) models, diagnose 
what kind of self-driven behavior is present in a time series. While ARIMA models are decompositions of 
single univariate series, diagnosing and addressing these properties form the foundation of multivariate 
time series. Before addressing multivariate cases, we discuss each component of an ARIMA model to better 
illustrate its complexity, importance, and application to communication. 

 
Autoregressive Processes 

 
AR processes are present when a strong predictor of behavior in one time period is a function of the 

behavior during previous time periods. That is, changes in a time series have a “memory” that decays 
progressively. For instance, wall-to-wall news coverage of a politician’s campaign gaffe one day may justify 
significant follow-up coverage the next day, and even additional news analysis later that week, but the event 
eventually decreases in journalistic value as other issues push it off the news agenda. AR processes describe 
this gradual, often exponential, decay in the influence of a shock to a process. AR processes are very common 
in social data and are almost always present in time series of media data (see Wells, Shah, et al., 2016). 

 
Failing to account for AR processes leads to model misspecification and/or biased parameter estimates 

in traditional (OLS) regression contexts. The traditional response to finding an AR process in a data set is to 
treat it as a nuisance—a statistical problem to be solved via specialized regression techniques. Often, these 
approaches rely on generalized least squares (GLS) models like the Cochrane–Orcutt or Prais–Winsten, which 

 
3 https://osf.io/dhb3q/?view_only=480a8981cfcf4094a8dba2425e2dbe99  
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differ from ordinary least squares (OLS) in that they can identify and correct for autoregression present in the 
error terms of a regression model (Hester & Gibson, 2007; Shah et al., 2016). 

 
These GLS approaches, however, suffer from two limitations. First, from a theoretical point of view, 

they treat temporal dependence as an estimation problem to be corrected rather than a meaningful 
component of the regression equation itself. Second, AR processes can be of varying lengths, or orders. GLS 
approaches (along with traditional regression diagnostics) can only detect and correct for an AR(1) process—
that is, when the AR property of a series lasts only one time period before becoming statistically insignificant. 
They thus miss higher order AR(2) or AR(3) processes, in which an event may generate independent 
influence beyond a single period, even when controlling for its one-period effect. When handling higher order 
AR processes, GLS approaches should be avoided. Recent work comparing OLS, Prais–Winsten, Cochrane–
Orcutt, ARIMA, and lagged dependent variable (LDV) models recommend higher reliance on ARIMA and LDV 
models because they “produce the best estimates under the widest number of experimental conditions” 
(Keele & Kelly, 2006, p. 196). 

 
Moreover, Cochrane–Orcutt and Prais–Winsten approaches cannot account for other properties of 

time series data: moving-average and integration. 
 

Moving-Average Processes 
 
MA processes are familiar to many analysts, but often as a tool for smoothing data rather than as 

a property of the data themselves. They are defined as a linear function of past random shocks. Unlike AR 
processes, which diminish in explanatory power over time, MA processes disappear from a system quickly 
and after a finite period; they are thus considered short term (Box-Steffensmeier et al, 2014). Yet these 
properties also have important implications, suggesting that the data-generating process has a relatively 
short memory. 

 
Stationarity and Integration 

 
Integrated series are less familiar to the typical analyst, but are arguably the most important. In a 

stationary (nonintegrated) series, shocks influence the process under observation and the quantity of 
interest shifts, but over the time series, these shocks have diminishing effects, bringing the series back to 
the equilibrium. 

 
Integrated series, also known as a random walk or a unit root process, have a permanent memory. 

These shocks persist perpetually, resulting in a series without a clear equilibrium (see Figure 1). Time series 
of communication phenomena are often integrated: daily growth in Twitter follower count, for example, or 
quantity of political-related news coverage over an election cycle. Diagnosing integration is critical to 
applying appropriate time series procedures. For example, a Prais–Winsten regression with integrated time 
series would yield incorrect estimates because only the AR properties are considered, not the integrated 
component. 
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Scholars in communication have progressively improved their diagnosis and treatment of 
nonstationary data, though more consistent treatment would be desirable. Early agenda-setting studies 
visually inspected ACF and PACF plots to determine stationarity without formal statistics. A common 
technique to correct integration, fitting a linear trend to an OLS regression, is flawed because of the 
sensitivity of OLS to the first and last observations, as well as to outliers (Box-Steffensmeier et al., 2014). 
Recently, scholars have begun reporting results of formal tests for unit roots (Augmented Dickey-Fuller, 
KPSS) before analysis (e.g., Neuman et al., 2014). 

 
To treat integration, first-differencing the series is often standard practice (Groshek, 2011; Searles 

& Smith, 2016). Another strategy, useful if other processes are present (AR or MA), would be to estimate 
an ARIMA model, saving the residuals of the model to then use as a normal, stationary time series—a 
process referred to as “pre-whitening.” 

 
Cutting-edge time series econometrics have shown that integrative processes are not binary. 

Rather than conclude that a series is stationary or nonstationary, scholars have estimated the degree to 
which a series is stationary. This approach—referred to as fractional integration—more precisely measures 
the order of stationarity, I(d), rather than assume d(0) or d(1) (Box-Steffensmeier & Smith, 1998). 
Fractional integration represents a long-memory process where memory is persistent but not permanent. 
For scholars interested in granular data, this may be a highly productive area for future research. Research 
on presidential debates, for example, has found that memes and other eruptions during debates can create 
persistent yet nonpermanent effects on social media response during the time of the broadcast. Fractional 
integration is also likely in communication data because of data aggregation. As Granger (1980) notes, the 
act of aggregating heterogeneous measures of individual behavior (e.g., news media, polling) will naturally 
produce fractional dynamics (Lebo, Walker, & Clarke, 2000). 

 
Importantly, using modeling approaches that “ignore the presence of fractional dynamics leads to 

an alarmingly high rate of type I errors” (Lebo et al., 2000, p. 32). This is because first-differencing a 
fractionally integrated series unintentionally removes both long-run and short-run dynamics. By accounting 
for what are essential partial differences, short-term processes remain intact, and long (but impermanent) 
properties can be identified. Fractionally integrated ARIMA models (ARFIMAs), a variant of ARIMA, 
incorporate this consideration. 

 
Figure 1 shows a diagnostic plot of Twitter mentions of presidential candidates Donald Trump 

and Hillary Clinton during the first 2016 general debate, measured at 10-second intervals. A visual 
analysis of the raw series suggested a unit root, or integrated series. The relatively linear, yet moderate, 
decay from high values of the ACF plot is a classic sign of fractional integration (Box-Steffensmeier et al., 
2014). We estimate that the time series of Twitter mentions of both Trump (d = .48) and Clinton (d = 
.44) were fractionally integrated (i.e., neither d = 0 nor d = 1), requiring the use of ARFIMA models. 
Others, like Habel (2012), use ARFIMA models to test the directional influence of media opinion from The 
New York Times and The Wall Street Journal editorials on the policy positions of the public and policy 
makers over 56 weeks. However, recent experimental work recommends extreme caution for researchers 
considering fractional integration techniques using fewer than 100 observations (Keele, Linn, & Webb, 
2016). 
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Figure 1. Illustration of graphical tools used to diagnose properties of time series. Data come 
from counts of tweets mentioning Donald Trump or Hillary Clinton during every 10-second period 
of the first presidential debate of 2016. 

 
In short, those undertaking future work in the field should be alert to the possibility of fractional 

integration as a variant of nonstationary time series data. As finely grained social media data and other 
computationally derived measures become more common, the likelihood of pure I(0) or I(1) processes will 
likely decline. 

 
Multivariate Time Series: VAR, Granger, Cointegration, Error Correction Model 

 
Our discussion of time series so far has centered on univariate techniques, but most analysts wish 

to know the influence of one process on another. Notably, multivariate time series techniques all build on 
the basic ARIMA techniques as a foundation. The closest analogs to univariate ARIMA models are 
intervention models and transfer function models, which allow for assessment of how an exogenous factor 
influences a time series, controlling for other possible influences (Box-Steffensmeier et al., 2014). 

 
An important multivariate method is vector autoregressive (VAR). These models estimate the 

influence of multiple (stationary) time series variables on one another, including lagged values of past 
observations. In contrast to structural equation models, which assume exogeneity of key independent 
variables, VAR makes few assumptions about functional form—in VAR, the analyst can specify which 
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variables are endogenous and exogenous. Once a VAR is estimated, Granger causality tests can be used 
to verify which variables can be considered temporally prior. VAR models and Granger causality tests are 
popular because of their ability to account for endogenous variables, making them especially appropriate 
for scholars who suspect bidirectional or multidirectional relationships (Freeman, Williams, & Lin, 1989). 

 
Cointegration and Error Correction Models 

 
But what if a researcher discovers that more than one of his or her series are nonstationary? One 

approach, as discussed, is differencing a series, which retains information on short-run dynamics, but sacrifices 
information about long-run dynamics. However, if the integrated components of two or more series are related 
in some way (i.e., they are “cointegrated”), differencing the time series would remove the relationship. 
Cointegration and error correction models (ECMs) are used to address these issues (Durr, 1992). 

 
Cointegration allows us to consider two or more series as related by speculating that they may have 

a correlation over the long term, but diverge in the short term, as in response to exogenous shocks. These 
shocks will push the series apart, yet in the long run, they will reequilibrate to track each other again. For 
example, consider coverage of two news events (political events and economic coverage), which may be 
correlated. At some point, an event (like a scandal) may cause excessive coverage of one event, perhaps at 
the cost of attention to the other; this results in an attenuation of the correlation. Yet, after some time, the 
two resume their close tracking of one another. 

 
ECMs are designed to account for both of these long-run correlations, but also short-term 

equilibrations. A statistical test is required to determine cointegration, followed by estimation of a full model 
via a single equation, using the Engle and Granger (1987) approach or a multiequation VAR approach known 
as the Johansen (1988) method. Error correction models have been applied to evolutionary factor analysis of 
news frames and public opinion about the death penalty (Baumgartner et al., 2008) and how uncertainty in 
economic news coverage affects consumer confidence (Van Dalen, De Vreese, & Albæk, 2017). 

 
While VAR and ECM techniques can capture and predict more complex dynamics among variables of 

interest, researchers should always consider whether ARIMA models or multivariate transfer functions are more 
parsimonious forecasting approaches based on their research questions, hypotheses, and modeling 
assumptions (Edlund & Karlsson, 1993). 

 
Additional Issues of Time Series in Computational Communication Research 

 
In addition to these issues in time series analytics, two other considerations are often present, forcing 

the analyst to make choices when generating and coding data to investigate particular social processes. 
 

Temporal Aggregation 
 
When an analyst measures a social process using a time series, one of the first questions to be asked 

is: How often should the process be measured? Temporal aggregation refers to increasing the unit of 
measurement for a time series (e.g., from minutes to hours, months to years). Time series with low levels of 
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aggregation have smaller time units at high frequency, while series with larger time units are highly aggregated 
with low frequency (Silvestrini & Veredas, 2008). One can “increase” the aggregation of a time series by using 
systematic sampling or by grouping time points (Freeman, 1989). 

 
There is some disagreement among scholars in econometrics and time series about whether temporal 

aggregation alters the measurement of the underlying social processes under observation (Marcellino, 1999; 
Silvestrini & Veredas, 2008). Low levels of aggregation can maximize the power of a model and reveal micro-
processes (Haug, 2002), but Freeman (1989) also encourages researchers to devote more time to deciding 
the “natural time unit” of their theories. That is, researchers should have some theoretically derived 
understanding of the temporal dynamics at play for their case that should inform their data collection and 
aggregation choices. For example, Harder et al. (2017) aggregates social media data at 6-hour intervals as a 
middle ground among traditional daily/weekly agenda-setting models and the second/minute granularity and 
pace of online platforms like Twitter. 

 
However, it is not always possible to measure processes at such a granular level. Polls, the gold 

standard of public opinion measurements, are collected about every three days to a week, and more 
sporadically during nonelection years (O’Connor et al., 2010). Most time series research involving news media 
is also operationalized at the day level of aggregation (Neuman et al., 2014). In addition, many dependent 
variables that scholars are interested in do not vary at low levels of temporal aggregation (e.g., partisanship), 
are very sparse (e.g., polls), or are difficult to verify when aggregated at a minute or hour level. For instance, 
our own exploration of the time stamps of Lexis, MediaCloud, and news organizations’ websites revealed 
enough discrepancy for most news outlets that we were unable to aggregate at levels lower than the day. As 
more and more granular media data become available to researchers, scholars should be careful in choosing 
a unit that makes sense for all data, and it may be optimal to test multiple levels of aggregation. 

 
Lags 

 
Another important consideration is the role of lags, or delays in the effects of variables on one another. 

In a natural setting, communication between two or more individuals does not occur simultaneously; people 
need to process information before they can respond. Lags are necessary to account for the time it takes for 
an effect or outcome to occur. Incorporating a one-unit lag in multivariate analyses is common in 
communication research (e.g., Bastos, Mercea, & Charpentier, 2015; Habel, 2012) and is often appropriate for 
communication data (Yanovitzky & VanLear, 2008). Others have tested different lag lengths to examine the 
relationship among different parts of the media system (Conway, Kenski, & Wang, 2015; Green-Pedersen & 
Stubager, 2010; Neuman et al., 2014). 

 
The reality is that the “real” lag lengths of media effects are often not known, especially in the domain 

of social media platforms and the increasing churn of the news cycle, which raises thorny new questions for 
researchers testing for media effects. When the correct time lag for a measured response to a media platform 
is unknown—and it often is, especially given the early stage of much of the relevant research—there is potential 
for model misspecification and parameter misestimation. This is an area in need of development, both 
theoretical (what kind of lags does our theory lead us to expect?) and empirical (what kind of lags are our data 
indicating exist?). 
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For example, in analyzing the 2016 debates, we speculated that Twitter would respond to candidates’ 
nonverbal and verbal populism cues at different rates; notably, nonverbal indicators would be more quickly 
discussed relative to verbal cues. Our initial analysis finds that visual elements took the fewest lags (1 lag, 10 
seconds) to influence candidate mentions, whereas tonal and verbal elements took longer (4 lags, 40 seconds). 
Several information criteria are available to determine an appropriate number of lags in a time series model. 
The most common include the Akaike information criterion and Bayesian information criterion (Lütkepohl, 
1984), which are used to compare the fit of models with different lag lengths. Of course, different information 
criterion may recommend different lag lengths, introducing an aspect of researcher judgment into the decision 
(Liew, 2004). 

 
Conclusion: Supporting the Temporal Turn 

 
The digitization of communication technologies and media archives, alongside the development of 

new tools and platforms for computational methods, promises great advances in empirical work, since the 
process of harvesting and analyzing is now feasible on growing scales and speed. However, as databases grow 
larger and more complex, so do the potential caveats that accompany them. 

 
Perhaps most critical is awareness of how choices made using the new techniques impact our 

conceptualization and execution of studies. How our models predispose us to think about communication 
phenomena may have substantial bearing on our analyses and findings. And in this connection, of course, the 
increasing availability of communication data, and facility with time series analysis in our field, presents risks 
of misuse, misspecification of models, the misinterpretation of coefficients, and the overestimation of causal 
processes. 

 
However, new methods also present us with the opportunity to rethink, and sometimes empirically 

investigate for the first time, existing assumptions—about the “natural” time increment of a phenomenon, or 
how long an effect takes to trigger or fade away. We expect a wealth of new findings, some of them descriptive, 
demonstrating the underlying properties of communication phenomena, and others predictive, explaining the 
dynamics of relationships among different parts of the media system. It is our hope that this research can help 
to improve the sense we make of a chaotic, unpredictable, and increasingly complex communication and mass 
opinion system. 

 
There are also areas in which communication will need to innovate. The challenge of summarizing 

textual data in a way that is conducive to time series analysis is an important problem, and one that 
communication scholars are already important leaders in addressing. Gaining the ability to capture meaning, 
changes in meaning, and the flow of units of meaning across communicative spaces is a tantalizing challenge. 
The problem of accounting for the complexity of the media system—both its speed and its volume and 
diversity—is another: With the potential of thousands of series coming from online outlets and social media, 
how will we choose which are most significant? What are the most appropriate techniques for aggregating 
them? How can we guard against Type 1 errors resulting from too many significance tests? We anticipate that 
time series analysis will play a growing role in the already burgeoning field of computational communication 
science, and we hope that this article proves helpful to some of the scholars doing this exciting work. 
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