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This is Part II of a two-part article that reviews methodological and statistical challenges 

involved in the quantification of humanity’s technological capacity to communicate, 

store, and compute information. In this Part II, we focus on the adequate unit of 

measurement for quantifying information. Naturally, we do this from the perspective of 

the results of our recent inventory of 60 technological categories between 1986 and 

2007, in which we propose an information theoretic measure that approximates the 

entropy of the source (which we call “optimally compressed bits”). We explain the 

interpretation, creation, usage, benefits, and limitations of this unit of measurement. A 

more coherent understanding of information volumes and magnitudes starts with a 

                                                 
1 The authors would like to thank Jim Short and Andrew Odlyzko for their detailed comments, and United 

Nations ECLAC for giving us the opportunity to set the groundwork for many of the ideas developed in this 

article. We would also like to thank Tom Coughlin from Coughlin Associates, John McCallum, Don Franz 

from Photofinishing News, Joerg Woerner from Datamath, Manuel Castells and Len Adleman from USC, 

our research contributors Miguel Gonzalez and Cristian Vasquez, and the statisticians from ITU 

(International Telecommunications Union) and UPU (Universal Postal Union). 
2 Provost Fellow, USC Annenberg School for Communication & Journalism; Economic Affairs Officer, UN 

Economics commission for Latin America and the Caribbean. 
3 Research Scholar, Information and Communication Sciences Department. 

 

Martin Hilbert: mhilbert@usc.edu 

Priscila López: priscila.lopez@gmail.com 

Date submitted: 2012–02–17 

mailto:mhilbert@usc.edu
mailto:priscila.lopez@gmail.com


International Journal of Communication 6 (2012)  Part II: Measurement and Conclusions 937 

thorough understanding of the methodological choices involved in related inventories.  

In this sense, the methodological challenges outlined in this article represent an open 

research agenda. We also discuss statistical lessons learned in our exercise (which is 

informed by more than 1,100 sources) in the roughly 300-page supporting online 

Appendix that is available at http://www.martinhilbert.net/WorldInfoCapacity.html. 

 

Units of Measurement: The Key Methodological Decision 

 
Building on the groundwork that we have laid in Part I of this two-part article, we now review the 

most essential methodological choice, the unit of measurement. Many units of measurements have been 

proposed and used to measure the amount of information, including both the number of words or 

minutes, and the respective hardware capacity. It would be straightforward to translate those indicators 

into additional ones, such as the corresponding meters or kilograms of books, or the informational 

equivalent of newspapers or hand-written pages (for some analogies of this kind, see Hilbert, 2011a). 

Each system of classification inevitably valorizes some point and silences another (Bowker & Star, 2000). 

The challenge consists in creating a classification system that is as clear as possible to enable the pursuit 

of a specific question, and as complex as necessary to present the aspects of reality that need to be 

considered to correctly answer this question. We therefore continue Part II of the article with one of the 

main insights we drew at the end of Part I: Any methodological choice eventually depends on the question 

that is on the mind of the researcher.  

 

We review some of the alternatives units of measurement that have been, and can be, used to 

quantify information processes, focusing on the measurement unit that we used in our recent inventory 

(Hilbert & López, 2011; also Hilbert, 2011b). The specific question we pursued in this inventory was the 

following: How did the world’s technological capacity to communicate, store, and compute information 

evolve over the period 1986–2007? To be able to answer this panel-data question (crossing several 

technologies and several years) we measured the technological capacity to communicate and store 

information in “optimally compressed bits,” and the technological hardware capacity to compute in 

“instructions per second” (i.e., millions or mega instructions per second, [MIPS]). We explain the 

theoretical and practical reasons behind this choice, and then end the article with a self-critical discussion 

of what these indicators can and cannot show.  

  

The Bit: Communication and Storage 

 
We chose the “optimally compressed bit” as the unit of measurement for communication and 

storage. Our choice was informed by information theory, which is a branch of applied probability theory 

that, today, is mainly taught in electrical engineering and communication departments. It is the rare breed 

of a branch of science that can almost exclusively be traced back to one single and epoch-making paper: 

Claude Shannon’s (1948) “A Mathematical Theory of Communication.” Shannon’s proofs and 

conceptualization of the bit have revolutionized our world and changed the course of history (for a popular 

science story on Shannon, see Gleick, 2011). Thanks to the technologies that followed Shannon’s ideas 

and his conceptualization of the bit, information theory is arguably the scientific theory with the most 

widely felt practical impact on the daily life of people at the dawning of the 21st century (see Pierce, 1980 

http://www.martinhilbert.net/WorldInfoCapacity.html
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for an introduction to information theory; for a more formal approach, see Massey’s 1998 lecture notes, 

which might be an easier read than the standard textbook in engineering departments from Cover & 

Thomas, 2006, which is more complete).  

 

We translate all kinds of information into “optimally compressed bits.” This implies two steps: the 

translation of information 1) into binary digits of hardware capacity, and then 2) into optimally 

compressed bits. We walk through both steps in the following text. 

 

From Analog to Binary Digits 

 
Being digital is not the “natural” state of information. Information is normally in its analog form 

when used by humans, but the digital format is more useful for machines. When we talk about “analog” 

information, we refer to any form other than “digital,” while we define digital as information in the form of 

binary symbols (Using the binary choice between 0s and 1s is merely a social convention; any binary 

choice would suffice, such as yes/no, there/not there, black/white, up/down, left/right, redpill/bluepill, the 

number 42/everything else, etc.). Digitizing an analog signal means finding out how many binary 

decisions are necessary to clearly identify a certain analog signal up to a chosen level of accuracy. For 

example, we have 256 analog symbols, and would like to clearly identify one of them. ASCII (American 

Standard Code for Information Interchange) uses eight binary decisions (= one byte) to represent 

2^8=256 symbols (26*2 letters [A-Z and a-z] + 10 numerals [0-9] + 194 other characters). The same 

applies to the 256 color options for each pixel in a picture formatted as a GIF (Graphics Interchange 

Format).  

 

Now, how many binary digits are needed to encode an analog signal, such as a picture or analog 

TV signal? One alternative is to look at the informational equivalent of scanning the picture or using a 

digital camera to film the same movie (i.e., the technique used in the inventory taken by Lyman et al., 

2003). The benefit of this approach consists in the fact that one can readily identify possible compression 

rates (more on compression later), while one of the problems with it is that a scanned picture also 

includes the information contained when the scanner recognizes the texture and wrinkles of the paper 

page, or the border of it, etc. While this is surely also information, it is not part of the information 

transmitted by the text in question. Another approach is to go back to the information theoretic Nyquist-

Shannon sampling theorem (Nyquist, 1928; Shannon, 1949; see also Anttalainen, 2003), which—roughly 

speaking—provides a theoretical minimum of the number of binary decisions required to replicate an 

analog wave (e.g., for analog telephony and radio). In our inventory, we follow this second approach. In 

practice, this means that for analog TV, for example, we analyze the resolution of a traditional 

NTSC/PAL/SECAM display of a television screen and determine how many binary digits we would need to 

represent the information on each displayed frame. We end up with the uncompressed number of “raw 

binary decisions” required to replicate the image on the television screen. 
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From Binary Digits to Optimally Compressed Bits 

 
Confusingly, there are two kinds of “bits” (Laplante, 1999). The first one refers to the 

representation of data in forms of 0s and 1s. This refers to the hardware capacity to store or communicate 

binary signals. The 500 GB (or 500*8*1,000,000,000 bits) hard disk and the 64-bit processor of a PC 

refer to this metric. We refer to this kind of data in binary form as “binary digits,” even though some 

authors sloppily refer to them as “bits.” The other kind refers to bits in Shannon’s (1948) sense. Shannon 

defines information as everything that truly reduces the uncertainty of the receiver, and he defines one bit 

as the amount of information that reduces uncertainty by half (regarding an existing probability space). In 

this sense, information is defined as the opposite of uncertainty, and uncertainty can be measured in 

probabilistic terms.4 Shannon’s bits also represent a binary choice—the one that reduces uncertainty by 

half. If the binary choice does not reduce any uncertainty, that is, if it represents something that the 

receiver (i.e., the receiving machine) can deterministically infer itself, it is mere redundant data, not 

information.  

 

Of the useful theorems Shannon proved about his definition of information, the one most useful 

for our purposes is that each stationary source that emits information counts with a given level of 

uncertainty. He called this measure the “entropy of the source” and measured it in bits: the number of 

times uncertainty has to be reduced by half in order to convert the given level of uncertainty of the source 

into certainty (the resulting reduction of uncertainty is what Shannon defines as information). For 

example, on a coarse-grained level, we could say that there are four kinds of information sources, 

respectively emitting text, audio, still images, and video. On average, there is a stable average amount of 

uncertainty (or its opposite, information) emitted from these sources. This is a nice fact to consider when 

searching for possible information metrics, because the entropy of the source does not change with the 

particular technology. The amount of uncertainty reduced by a letter of text is the same if it is 

communicated by a postal letter, a SMS text message or a highly compressed computer Word document. 

Another important point for our purposes is that the entropy of the source can be approximated by 

compressing data (binary digits) to its uttermost rate of compression.5  

 

Compression is a key concept. Compressing data means to take the redundancy out of the 

message. Redundant data can be left out without notably reducing the informational content of the 

message (reducing data without reducing the amount of information contained; or equivalently, reducing 

data without increasing uncertainty about the content of the message). This is similar to leaving out some 

of the letters in “ths txt, wthot reducng yr ablty” to decode it. The entropy of the source is defined as the 

most parsimonious representation of the source that (on average) still allows for the unmistakable 

reproduction of the full original message.  

                                                 
4 It could also be measured in algorithmic terms, since Kolmogorov complexity and Shannon entropy 

approach each other asymptotically (see Zvonkin & Levin, 1970; also Cover & Thomas, 2006, Ch. 14.3; Li 

& Vitanyi, 1997, p. 187), but this is only holds in the limit and is very difficult to implement practically.  
5 In this way, Shannon himself (1951) was the first to estimate the entropy (uttermost compression rate) 

of English text, which he showed to be around one bit per character.  
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Achievable compression rates depend on the redundancy of the source, and the redundancy 

depends on the probability distribution of the source (Cover & Thomas, 2006). Most compression 

algorithms specify a certain standard compression promise for a specific kind of source, such as those that 

handle text (including letters, numbers, and other signs), audio and sounds (including voice and music), 

still images (including both black and white and color), and videos (which are basically a sequence of 

images in time). In general, video is the most compressible kind of content (being partially predictable—or 

“redundant”—in both space and time), followed by images (space redundant), and audio and text 

(partially predictable in time). In our inventory, we use these four broad categories to estimate the 

dominating rates of compression for a given year (see supporting online Appendix B at 

http://www.martinhilbert.net/WorldInfoCapacity.html).  

 

Box 1. Information vs. Data: An Illustrative Example of the Importance of Compression. 

The number of (Shannon’s) bits contained in a message can be different from the number of 

binary 0s and 1s used to encode the message, and can make a large difference when creating time series, 

such as we have done. This is because compression algorithms have been improved notably during the 

past two decades. Actually, many new information technologies only became viable thanks to the efficient 

compression of information, such as mobile telephony. Compression algorithms allow the same hardware 

(think of a bucket or a tube) to now handle much more information (more filling) because the content is 

more compressed. 

For example, consider a hard disk with a hardware performance of 1 MB of storage of video in 

1986, 1993, 2000, and 2007. 1 MB means that this piece of hardware can hold either a 0 or a 1 8 million 

times. How much information can we store in this hardware? This depends on the compression of the 

information in question. Let’s consider MPEG-4 as the optimally conceivable “entropic” compression in 

2007. Since MPEG-4 is the commonly used standard for video in 2007, the video from 2007 is already at 

the optimal compression rate and therefore represents 1 MB. Let’s further assume that there was no 

compression algorithm available in 1986. Without loss of quality, MPEG-4 can compress video to 1.67% of 

its original file size (compression factor 1:60; see supporting online Appendix B at 

http://www.martinhilbert.net/WorldInfoCapacity.html). This is because videos are usually highly 

redundant and predictable: If two frames are exactly the same, the second frame does not reduce 

uncertainty and is therefore redundant. For video, large parts of the same frame are the same (space 

redundancy), as well as large parts between consecutive frames (time redundancy). Therefore, the 

uncompressed 1 MB from 1986 is equivalent to 1/60, or 0.0167 “entropic” MB (now counting Shannon 

bits, not hardware binary digits). We further assume that, in 1993, video was usually compressed with an 

algorithm called Cinepack (e.g., in Apple Quicktime, in Microsoft Windows, and the game stations of SEGA, 

Atari, and Panasonic). Cinepack reaches a compression factor of 1:20. Therefore, the 1 MB of video from 

1993 represents 20/60, or 0.33 optimally compressed MB (see supporting online Appendix B). For the 

year 2000, let’s suppose that most videos were compressed with MPEG-1, which achieves a video 

compression factor of 1:27. This implies that the 1 MB of video from 2000 is equivalent to 27/60, or 0.45 

optimally compressed MB (see supporting online Appendix B). In short, 1 MB of hardware capacity used 

for video from 1986, 1993, 2000, and 2007 translates to 0.0167, 0.33, 0.45, and 1 optimally compressed 

MBs, respectively, when normalized with regard to what (in 2007) is considered the optimal compression 

rate. On the contrary, the amount of hardware binary digits stayed the same at 1 MB. It is unfortunate 

and confusing that both concepts are often referred to as “bits” (or “kb,” “MB,” etc.).  

http://www.martinhilbert.net/WorldInfoCapacity.html
http://www.martinhilbert.net/WorldInfoCapacity.html
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It is important to state that we do not directly calculate the entropy of the source for each kind of 

content. This would not be practically possible, and those algorithms do not exist in practice (Todorović, 

2006), as, for example, each 90-minute movie contains a different amount of information. What is readily 

available, however, are reports about the average level of compression that can be achieved by a specific 

compression algorithm for a certain kind of content: text (e.g., with file formats like .zip or .rar), audio 

(e.g., with MP3 files), images (e.g., with GIF or JPEG files), and video (e.g., with MPEG-4 files). Once we 

know both the kind of content, and which kind of program is used to handle it, we can infer the level to 

which this specific content could be compressed if it were compressed with the most efficient compression 

algorithm available (see Box 1 for an illustrative example). 

 

 

What Does Normalization of Compression Rates Require in Practice? 

 
A hypothetical example illustrates the underlying logic and facilitates future practical use of it 

with statistics (see also Hilbert, 2011b). As shown in Figure 1, we suppose the existence of one storage 

(or communication) device in yeart, which has a hardware capacity of two physical representations (two 

silicon-based logic “bit-flip” gates to store information, or two communication transmission cables). Half of 

the information content consists of images (which are not compressed, as in the cases of industrial x-rays 

or detailed maps) and the other half consists of text, compressed by a factor of 2:1 (using, for example, 

the Lempel-Ziv-Welch algorithm used in early UNIX systems in the 1980s). This implies a technological 

capacity to store (or communicate) 3 bits in yeart. In yeart+1, investment in infrastructure leads to a 

duplication of the number of devices and technological progress in hardware leads to a triplication of 

storage (or communication) units per device. Moore’s (1995) famous law, for example, tracks this kind of 

progress by registering the number of transistors that can be placed on an integrated circuit. Additionally, 

we suppose that images are now compressed with JPEG (the norm in personal and industrial image 

handling in 2007), achieving a high-quality compression factor of 11:1, while text is compressed with .zip 

or .rar, reaching a factor of 5:1. This enables us to store (or communicate) a total of 108 bits in yeart+1. 

The result is a multiplication of the initial amount of information by 36 (108/3, or a growth rate of 

3,500%). As visualized by Figure 1, this total of technological change can be traced back to 1) a 

duplication of infrastructure (growth of 100%), 2) a triplication of hardware performance (growth 200%), 

and 3) a sextuplication of the software performance for content compression (500%)6: 

(1+1)(2+1)(5+1)=36.  

 

                                                 
6 In practice, the contribution of content compression is a combination of the advancement in compression 

algorithms (software performance) and the general shifts in the kind of content. If more compressible 

content gains importance, the average technological progress of content compression increases. 
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The contribution of ever-more powerful compression algorithms for digital content (software 

performance) can either be calculated as a weighted average of the progress of compression of each kind 

of content, or as a residuum.7 In practice, the latter alternative is more straightforward. 
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Figure 1. Inside the black box of digital technological progress to store and communicate 

information.  Source. Authors’ own elaboration. 

 

 

As a result, to be able to meaningfully estimate the amount of information stored and 

communicated in technological devices, we require statistics on: 

 

(i) the amount of infrastructure and devices,  

(ii) the hardware capacity of each device, and  

(iii) the compression rate with which information is compressed, which itself depends on  

(iii.a) the type of content compressed in digital technologies (in our level of coarse-

graining text, audio, images, and video), and on 

(iii.b) the dominating compression algorithm used and the optimal level of 

compression available for this kind of source.  

 

 

                                                 
7 In the given example, the option of the residuum is straightforward: [108/3]/2/3 = 6. More error-prone, 

but no less correct is the calculation by way of expected value: Yeart: 1/2 of hardware contains image, 1/2 

of hardware contains text; Yeart+1: 2/3 of hardware contains image, 1/3 of hardware contains text. This 

means that 1/2 of the hardware stays as image (equal to 1 hardware unit of Yeart), 1/6 of the hardware is 

converted from text to image (equal to 2/6 hardware units of Yeart), and 1/3 of the hardware stays text 

(equal to 2/3 hardware units of Yeart). Expressed in bits of Yeart, this is equal to 1 bit staying image (of 

1/3 of the bits of Yeart), 4/6 bits being converted from text to image (or 2/9 of the bits of Yeart), and 4/3 

bits staying image (or 4/9 of the bits of Yeart). These are the right weights to apply to calculate the 

weighted average of the contribution of compression: 1/3(11/1)+2/9(11/2)+4/9(5/2) = 6. 
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Since these last two statistics are scarce and unreliable, we decided to pick only four 

representative years over the past two decades to carry out our estimations: 1986 (basically before the 

digital age), 1993 (the start of the era of the Internet and mobile telephony), 2000 (the height of the 

financial Internet bubble), and 2007 (the last year for which we obtained reliable global statistics). This 

choice of four points which are equally distant in time is a compromise. On the one hand, 1986, 1993, 

2000, and 2007 are far enough apart to ensure that, in each year different kinds of compression 

algorithms would have been adopted worldwide. On the other hand, it allows us to measure three equally 

long periods of growth (1986–1993, 1993–2000, and 2000–2007) for the timeframe for which we have 

sufficiently reliable statistical sources, which is important because three periods is the minimum 

requirement to obtain a basic understanding of the overall shape of the growth process: One or two 

periods might be deceiving when identifying the typical shape of the growth process, which are 

traditionally either linear, exponential, or logistically S-curve shaped. 

 

 

What Does “Optimal Compression” Mean for Our Purposes? 

 
There are two additional caveats that have to be addressed when working with any normalization 

of compression rates: quality and technological progress. Compression algorithms can be “lossless” or 

“lossy.” Lossless compression algorithms only take out those redundancies that do not take away any 

information from the message, while lossy algorithms reduce the quality of the information content. For 

example, when compressing a photo to a size that is adequate for upload as an email attachment or a 

thumbnail on a social networking site, the size of the file is reduced, but the quality of the image often 

suffers as well. This kind of compression is “lossy.” While most of the modern compression algorithms, 

including JPEG, MP3, and MPEG-4, most commonly use lossy compression, they often also allow the user 

to choose the level of “loss.”8 The accompanying manuals and technical reports classify the results of the 

compression in various groups, which they give names like “very good” or “excellent quality” results.9 

These latter two categories usually include both products of lossless compression and results of lossy 

                                                 
8 In addition to lossy compression, there is also often loss of information during transmission or retrieval. 

This frequently happens with analog information (such as the notorious snowstorm on analog terrestrial 

TVs during times of bad reception). The typical degree of interference is usually not reported by 

equipment producers or service providers. How should we adjust for this potential loss of informational 

performance? For analog fixed-line telephony, the literature reports so-called signal-to-noise ratios 

(Anderson & Johannesson, 2005). Luckily, one of the benefits of digital transmission is that error-

correction codes reduce information loss to a minimum (see Pierce, 1980). Notwithstanding, it is common 

that wireless technology (e.g., mobile telephony) is subject to some kind of interference. One can argue 

that only a part of the transmitted information actually reaches the receiver (depending on the quality of 

reception). We are not aware of any statistics that report the average interference and reception 

challenges for such digital technologies. 
9 For the case of telephony, for example, we use the mean opinion score (MOS) (ITU-T, 1996), which 

provides a numerical indication of the perceived quality of received media after compression and/or 

transmission (see supporting online Appendix D at http://www.martinhilbert.net/WorldInfoCapacity.html).  

http://www.martinhilbert.net/WorldInfoCapacity.html
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compression where the reduction of information cannot be noted by the human observer (i.e., is not 

possible to receive with the given resolution of the human senses, such as sounds at a very high pitch, or 

image details too small for the eye to perceive). Additionally, these reported results of tests often also 

include some additional bits of redundancy that are added by the compression programs to increase the 

robustness of the content. 

 

This being said, in our inventory, we define the optimal level of compression in a given year as 

the uttermost level of compression that is achievable with the most powerful existing compression 

algorithm in this given year, while achieving a level of quality that is indistinguishable by the human 

observer from lossless compression.  

 

The foregoing definition of “optimal compression” points toward another qualification to consider: 

That which was considered optimal compression a decade ago is not the same as what we understand to 

be optimal compression today. The “optimal” compression algorithm has changed considerably over recent 

decades, and it is expected to continue to change over time (the exception seems to be for compression of 

text10). For some kinds of content, it has only been in recent years that we have made great progress in 

approximating the probabilistic nature of the source (e.g., with the introduction of so-called turbo codes in 

1993), and the search for ever more perfect compression algorithms is still ongoing. It can therefore be 

ambiguous to declare “optimality” without specifying the particular year in which the algorithm is or was 

“optimal.” For practical reasons, in our exercise, we normalized the data to what was considered “optimal 

compression” in the year 2007.  This means that one might be able to readjust our exercise in a couple of 

years and renormalize it to the newly found “optimal compression rates” as coders discover how to exploit 

yet-unknown structures in the most diverse streams of data. 

 

It is important to underline that the method we chose is, of course, not the only possible way to 

normalize compression rates across several decades. One might as well allow for more or less information 

loss, or normalize to some other rate of compression besides the optimally achievable in a given year. For 

example, we could have normalized to the “most commonly used” level of compression of a given year, or 

any other characteristic level of compression (e.g., 2000), much like economists normalize to inflation 

rates of specific years (which is a similarly moving target). Of course, this does not change the validity of 

the results. However, there are theoretical and practical reasons for opting for the most recent 

technological frontier.11 

 

                                                 
10 Compressing each English character down to 1.21 with an algorithm called DURILCA is within the 

theoretical limits proposed by Shannon (1951), between 0.6–1.3 bits per character. 
11 One theoretical reason is the fact that the most efficient existing compression algorithm “approaches 

the entropy of the source” the best as possible (engineers refer to this as “entropic compression,” which is 

naturally redefined with any new and more efficient compression algorithm), while one practical reason is 

the fact that all other levels of compression in the time series of interest will be at a lower level of 

compression, and therefore, one does not need to “decompress” the content that is compressed at a 

higher level than the level chosen for normalization.  
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Box 2. Thought Experiment: Global Compression as the Ultimate Test for  

Uniqueness of Information 

Being aware of the nature and concepts behind the compression of information, we can now 

return to the question of how to unambiguously identify the amount of “unique and original information,” 

which we discussed in Part I of this article. What compression algorithms effectively do is take out any 

duplication (redundancy) of information in a message. In reaching our estimate that the world’s global 

capacity to store information was about 300 optimally compressed exabytes in 2007, we only eliminated 

the redundancy contained in an archive, not the redundancy between archives. For example, we said that 

an average analog video contains roughly 98% redundancy, and can therefore be compressed by a factor 

of 1:60 with MPEG-4 (see Box 1). However, we do not count the compression that would be possible if an 

algorithm would recognize that the same video is copied twice on the same hard disk. If this would be 

discovered, an intelligent algorithm would only have to store the first video, plus the instruction “copy the 

video in case it is necessary” (which is quite bit-efficient). The separate storage of the second video would 

be “redundant” and would not actually provide any real information. This logic is already applied by 

intelligent solutions that store different “playlists.” A “playlist” does not require a “recopy” of every song, 

but merely storage of the sequence in which to play the songs. However, these algorithms do not usually 

look for duplicates of songs automatically. If the program were truly efficient, it would even recognize that 

parts of an archive (text, audio, image, or video) are in agreement with similar parts of another archive 

(for example, if a paragraph is copied from one document to another), and would not have to store the 

entire paragraph again, but only the command “insert paragraph XYZ here.” This is usually not what 

happens on hard disks. Most compression algorithms do not search for redundancy among different files, 

but only within a given file.12  

In this sense, we can imagine a thought experiment whereby the world’s total amount of 

information is stored on one giant hard disk. We could then imagine running some large compression 

algorithm on all the world’s archives, having programmed this algorithm to look for similarity among 

archives, and to identify which part of which archive is truly unique and which part is redundant. It would 

surely turn out that some parts of a song on the hard disk would be in agreement with other parts of a 

song on the same hard disk. After crawling through all the world’s archives, the algorithm would provide 

us with the optimal compression among all of the world’s information, a total which would be equivalent to 

the amount of truly unique information. Comparing this with the truly unique information from a previous 

moment in time would allow us to identify how much truly unique information had been produced in a 

given year. 

Unfortunately, this is only a thought experiment at this moment, and we do not count with such 

an algorithm; neither do we count with the practical possibility to run it on the world’s global stock of 

information. It is therefore a theoretical concept at this point, but it shows how uniqueness of information 

could be determined by compression.  

 

 

 

                                                 
12 Biologists, however, already work with a similar logic (see Christley, Lu, Li, and Xie, 2009).  



946 Martin Hilbert & Priscila López International Journal of Communication 6(2012) 

 

MIPS: How to Measure Computation? 

 
The choice of a unit of measurement for computation can even be more confusing than the choice 

for communication and storage. In essence, a computation is some kind of action on a group of input 

which produces one output. Usually, this transformation of information in time follows some algorithm (a 

“procedure”). Similar to the cases of information storage and communication, which depend on hardware 

and compression algorithms, the performance level of a computation depends on (a) hardware (the 

number of transformations) and (b) software algorithms (the way these transformations are performed).  

 

For hardware performance, the most commonly available performance indicator is the number of 

MIPS. In our exercise, we use MIPS of Dhrystone 1.1. This indicator is not without criticism, mainly 

because MIPS performance depends on several conditions, such as the computer’s input/output speed and 

the processor architecture, and can therefore favor or discriminate against certain types of computer 

design (Lilja, 2000). Other indicators have been proposed by the industry, such as FLOPS (floating points 

operations per second) and SPEC (system performance evaluation cooperative; see Hennessy & Patterson, 

2006). The latter is often updated (e.g., SPEC CPU92, SPEC CPU95, SPEC CPU2000, SPEC CPU2006), and 

as such, it does not allow for coherent comparisons over time. The former (FLOPS) is the standard to 

measure the performance of supercomputers (Weicker, 1990), or graphical processing units (GPU). We 

also use it in our exercise (translating it to MIPS). MIPS, however, is by far the most commonly used 

hardware performance indicator for the period of the 1980s and 1990s, and statistics tracked in MIPS are 

widely available (e.g., Longbottom, 2006; McCallum, 2002; Nordhaus, 2007). In this sense, similar to 

what we often found in Part I of this article, this decision is based on reasons of practical feasibility, and 

not on any theoretical or conceptual superiority of the indicator.  

 

In theory, the performance of a computer depends on the software. The number of hardware 

instructions of a computer is roughly equivalent to the number of binary digits that can be found with 

storage or communication hardware. The kind of software run on this hardware also has become more 

efficient during recent decades. One can carry out computational tasks with 1 MIPS in 2007 that could not 

have been executed with the same 1 MIPS in 1986. This is because ingenious software engineers 

constantly develop better algorithms. Computer scientists are very meticulous about measuring the time-

performance of their algorithms, which they do in Θ-notation (or simply O-notation; see Cormen, 

Leiserson, Rivest, & Stein, 2003). The two main contributors to the speed of algorithms for certain 

computational tasks are the “leading constants” (which reduce the computational time linearly) and their 

“polynomial degree” (reducing their computation time exponentially). Faster algorithms allow the 

execution of the same task much faster with the same amount of hardware instructions per second.13  

                                                 
13 The journal Computing in Science & Engineering lists what it considers to be the top 10 algorithms of 

the 20th century (Dongarra & Sullivan, 2000). From those selected, one gets the impression that the 

heyday of the greatest discoveries in algorithms was during the middle of the 20th century and not toward 

its end. This does not mean that, since then, algorithms have not continued to improved, but that they 

improved less, mainly by way of improvements in leading constants, not polynomial steps. The importance 
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To be able to track this progress of software performance for our purposes, one not only needs to 

know the performance of each algorithm (which might be a feasible task), but also which kinds of 

algorithms are used by which computational devices, in which intensity, and at which point in time. How 

frequently does a PC sort information? How often does it optimize something? How frequently does it do 

which of any kind of matrix transformation? What about a supercomputer or a mobile phone? 

Unfortunately, these statistics do not exist at this point. They would first have to be created to pursue 

those questions.  

 

One of the major drawbacks of MIPS as the performance indicator for computer hardware 

capacity is that MIPS is not directly comparable to the number of bits stored and communication. Short, 

Bohn, and Baru (2011) therefore estimate the number of bytes processed by enterprise servers per 

transaction, an estimation executed by several benchmark tests. The result is the hardware capacity in 

bytes, and therefore presented in the same unit of measurement as storage and communication when 

measured in binary digits. 

 

Conclusions and Limitations 

 
Let us summarize some of the points made in Part II of this two-part article and discuss the 

limitations of our approach. In agreement with our conclusions from Part I and in agreement with other 

researchers in the field, we want to state clearly that “we view this report as a ‘living document’” (Lyman 

et al., 2003, p. 14). It is our hope that our numbers and methodological decisions can be improved upon 

in the future (see also our almost-300-page supporting online Appendices A, B, C, D, and E). That being 

said, we discussed our choice for the unit of measurement in this Part II. Let’s now finish with a critical 

look at what this measure can and cannot explain. 

 

 

What Entropic Information Quantity Can Explain 

 
Three of the benefits of the metric of “optimally compressed bits” are that 1) it focuses on a 

fundamental level, 2) it is a valid measure for time-series, and 3) it provides an objective and non-

                                                                                                                                                 
of leading constants is not to be underestimated for our practical purposes, since an algorithm that runs 

twice as fast is equal to roughly 1.5 years of progress in computational hardware (which doubles every 

+/–18 months; see Hilbert & López, 2011). Important improvements are still being made in the fields of 

gaming, optimization, and approximation algorithms. The top 10 of the Computing in Science & 

Engineering include the Dantzig simplex method for linear programming in 1947, the Krylov subspace 

iteration in 1952, the Metropolis Algorithm in 1953, the Fortran I compiler in 1957, the QR algorithm in 

1958, the decompositional approach to matrix computation in 1961, a perspective on Quicksort in 1962, 

the Fast Fourier transform in 1965, the integer relation detection in 1977, and the fast multipole algorithm 

in 1987. Furthermore, though not published in this list, we might speculate that many computations today 

are spent on public-key cryptography, like RSA in 1978.  
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ambiguous logic for how to transform information that resides in different sorts of content (text, images, 

audio, video) into the same unit. 

 

It is widely accepted in all branches of science that entropy, i.e., Shannon’s concept of the bit 

(entropy), is an indicator on a fundamental level. This approach defines information in Shannon’s (1948) 

sense as the reduction of uncertainty on the syntactic level (given a certain probability space), and we 

approximate entropy by the uttermost possible compression of a string of data. This measure is not only 

clearly defined, but also measurable. It can be (and has been) applied to quantify information in all kinds 

of disciplines and branches of science. Entropy is maybe the most fundamental level there is (to cite the 

eloquent question of the renowned physicist John Wheeler: “It from bit?” 1990, p. 5; see Zurek, 1990, for 

the role of information in physics; see Adami, 1997, for its role in biology). While this fundamental 

measure certainly has limited explanatory power, the technological capacity to handle optimally 

compressed bits can be used as a basis upon which to build more advanced and specific theories and test 

other research questions later on. This might include questions like the following: How many bits are 

actually consumed? How many bits are paid attention to? How do people value different bits, and at which 

moments? 

 

Second, it is important to remember that optimally compressed bits are a hypothetical measure, 

in that they do not measure “what is,” but “what would be if all data were optimally compressed.” This is 

different from other studies that measure the hardware capacity in (what we call) binary digits (e.g., 

Gantz et al., 2008). The quantification of hardware capacity might provide important insights, especially 

when working in the hardware industry or related fields. This measure is therefore not less valid; it simply 

measures something different than our measure. The number of bits that are represented by one binary 

digit depends on the chosen compression rate, which depends, in theory, on the probability distribution of 

the content in question, and in practice, on our knowledge of and technologic capability to exploit the 

probabilistic nature of the source without reducing the quality of the content (compression). The 

normalization to specific compression rates changes the results significantly. According to our estimates, 

advancements in information compression resulted in the fact that a given (hardware) Internet bandwidth 

in 2007 carried three times more information than the same (hardware) bandwidth in 1986 (see Hilbert, 

2011b). In other words, if a 1 Mbps modem in 1986 was able to transmit 1 Mbps, the compression 

algorithms available in 2007 enabled us to send 3 Mbps of optimally compressed information through the 

same 1 Mbps hardware channel. Therefore, normalization to compression rates is especially important for 

the creation of meaningful time series (see Box 1 for an illustrative example). 

 

Once normalized, it is straightforward to meaningfully compare the results in a time series. For 

example, if one would like to measure the role and impact of “more information” on certain other 

socioeconomic indicators over time (like economic growth, democratic stability, education, health, etc.), it 

would be less insightful to test for hardware capacity as the independent variable. For impact, it does not 

matter if lots of hardware or little hardware is used; what matters is what is on this hardware. 

Normalization to compression rates makes the actual amount of information on the hardware comparable 

over time. 
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A third benefit of this measure is that it allows for the unambiguous measurement of analog and 

digital content, including a meaningful measure for different kinds of content (text, images, audio, video). 

This is more challenging when using metrics like minutes, words, or binary digits that host content with 

different compression rates. 

 

For example, an old adage says that “A picture is worth a thousand words.” According to our 

assumptions, a newspaper image of one cm2 is worth between 106 and 213 words. So, turning the ration 

the other way around, we are able to reconfirm ancient wisdom and conclude that a 6 cm2 newspaper 

image is worth a thousand words (in information theoretic terms).14 Similarly, comparing the informational 

magnitudes of written and spoken words, our information theoretic approach shows that a spoken word 

reduces 750 times more uncertainty than a written word (defining uncertainty in precise probabilistic 

terms).15  While this might sound surprising at first, it becomes reasonable when one considers that sound 

does resolve a considerable additional amount of uncertainty, because there are many choices for how to 

say the word. For example, when listening to someone speaking, one knows immediately if this person is 

an adult or child, man or woman. The listener also gets a great deal of information about “how things are 

said,” beyond simply “what is said.” Suppose that there are only three levels of pitch (high, medium, low), 

four speeds at which to say a word (hasty, fast, medium, slow), nine ways to pronounce a word, and 

seven types of the overall tone. We already have 756 versions of “how to say” the same word (3*4*9*7). 

This means that this kind of spoken words resolves 756 times the uncertainty that the same word does 

when presented in a written format. Of course, this comparison is not precise in information theoretic 

terms, but it serves to explain the underlying logic of resolving uncertainty in probabilistic terms.  

 

Something similar applies to the comparison of information contained in videos (moving images), 

still images, and words. The pioneering Japanese Information Flow Census assumed that one minute of TV 

broadcasting (moving pictures and audio) is equivalent to 1,320 words (Duff, 2000, p. 79), while Bohn 

and Short (2009, p. 32) assumed 153 words per minute, or roughly the number of words that can be 

spoken during one minute. These choices have been justified on the basis of the pursued research 

question. Our normalized estimates report that one minute of TV broadcasting is the informational 

                                                 
14 A printed word can be codified with 44 bits (8 ASCII bits/character*5.5 characters/word), which can be 

compressed to its entropic level of 6.7 bits/word. Compressing each English character down to 1.21 with 

an algorithm called DURILCA, which is within the limits proposed by Claude Shannon (1951) between 0.6–

1.3 bits per character. A 1 cm2 low-quality, grayscale newspaper image from 1980 contains 709 bits 

(compressed by a factor of 6:1), and a 1 cm2 normal quality color newspaper image from 2007 contains 

1,422 bits (compressed by a factor of 16:1). 
15 We measure 12 optimally compressed kbps for a digital fixed-line phone and 8 optimally compressed 

kbps for a 2G GSM mobile phone subscription. In terms of words, the Japanese Information Flow Census 

(Duff, 2000, p. 79) and the UCSD study (Bohn & Short, 2009, p. 32) both assume that 120 words are 

spoken per minute on the phone. Combined, these numbers result in 6,000 bits per word for our 

estimation of fixed line telephony, and 4,000 bits per word for our estimation of mobile telephony (let’s 

average to 5,000 bits per spoken word with acceptable quality). 5,000 divided by the 6.7 optimally 

compressed bits of a written word ≈ 750.  
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equivalent of 7.75 million to 19 million words.16 This means that, roughly speaking, if one would like to 

describe everything happening during this one minute of action on the TV screen (every little perceivable 

detail of movement and color change), one would need the informational equivalent of 12 million words. 

This is the unambiguous result of applying Shannon’s logic: If it reduces the uncertainty of the receiver by 

half, it is a bit, regardless of whether this reduction in uncertainty is achieved by words, images, sounds, 

or videos. If all of this detailed information that is displayed by the TV set is also perceived by the viewer, 

or how much value it adds, is another question, which could be analyzed in a subsequent, additional 

analysis. It is likely that there are decreasing returns to the amount of informational detail displayed, but 

at this point, this is merely a hypothesis which will still have to be tested empirically. This brings us to our 

final point. 

 

What Entropic Information Quantity Cannot Explain: The Value of Information 

 
It is also clear that such fundamental indicators will not be able to explain everything. But it will 

surely be helpful to explain “something” on a basic and fundamental level, and this can contribute to the 

isolation of other yet-unknown aspects of our complex reality. As a result, the residuum of the unknown 

becomes smaller, which is the essence of the entire scientific enterprise.  

 

The quantification of the amount of bits indirectly fosters our understanding of more complex and 

intangible aspects of communication. For example, if the same number of bits leads to different results 

(ceteris paribus), it can be inferred that the difference is due to yet-unexplored (rather qualitative) 

aspects of this quantity of information. If the effect changes with the quantity of information bits, we can 

infer that some correlation does exist, and we can isolate the remaining residuum. While quantity will 

certainly not explain “everything,” it resolves a part of the mystery. Narrowing down the unknown allows 

us to evolve new and more specific theories, reducing the complexity of reality step by step.  

 

Part of the unknown that we do not yet understand has to do with the value of information. Some 

of the bits that we handle are certainly more valuable than others, while some might be worthless. For 

example, instead of an information-rich voice call, maybe the informational needs of the recipient would 

be just as satisfied when receiving an SMS text message. Maybe it would be enough to tell the user in 

words that “the stock market closed at 10,000 points,” or that “the team won 2–1,” instead of having to 

show them exactly what it looked like. This might be true, but it is a different and additional question. It 

asks how people value information, which is a more sophisticated question than determining the amount 

of information, which is the question that we try to answer. The latter is, however, a condition for 

understanding the former, because the value of information has to be defined as “value per informational 

unit”: US$/bit, attention/bit, pleasure/bit, happiness/bit, etc., or simply value/bit. 

 

                                                 
16 TV broadcasting on an analog black and white NTSC television set receives 0.866 optimally compressed 

Mbps, while an analog color TV set receives 1.308 optimally compressed Mbps (NTSC), and a digital TV set 

2.155 Mbps (downstream and upstream).  
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This also means that both are independent, and that the variable for “value” can be freely 

defined. It also means that we will not be able to answer the question of the value of information until we 

start to quantify the amount of information. The ideas conveyed by a book often seem almost as complete 

as the ideas conveyed by a movie. Above, though, we found out that one would need the informational 

equivalent of 12 million words to describe one minute of action on the TV screen. This seems like a lot of 

words for details that might not be of value, which would propose the following hypothesis: [value/bits in 

words] > [value/bits in video]. If this hypothesis were always correct, perhaps it would turn out that the 

media-rich transmissions of audio and video are totally redundant, and that people of the future will 

exclusively rely on content-succinct texting instead of televisual content. Until now, this does not seem to 

be the case, and people seem to highly appreciate the additional information provided by media-richness 

in most situations (and also because video can transmit the same information much faster than words). 

However, anecdotal experience seems to suggest that there are diminishing returns to media-richness. 

But again, for now, all of these questions are merely hypotheses that have yet to be tested rigorously. To 

be able to test hypotheses about information value, we will have to start measuring the quantity of 

information first.  

 

Our choice of the bit proposes a strategy that suggests setting the focus on basic indicators that 

reflect essential and irreducible parts of broader theories. In one way or the other, every quantitative 

theory of information and communication will have to deal with the probabilistic nature of information and 

the resolution of uncertainty on the syntactic level. Of course, cultural, monetary, semantic, and all kinds 

of other values can be assigned to bits, and each bit can be given a different weight. But this does not 

change the fundamental mathematical character of information, which is defined by the number of the 

binary choices necessary to resolve the respective amount of uncertainty (its number of bits).  

 

The role of information and communication in a society is still not well understood, but we know 

that, as always in science, measurement and quantification are important ingredients in gaining deeper 

insight. This process is painstaking and labor-intensive, especially when done for the first time. We 

nurtured our motivation during the past four years of bit-counting by knowing that we contribute to the 

sight of a one-eyed researcher-king in the land of the blind.17 In this sense, our exercise and the exercises 

of our colleagues leave no doubt that there is much more to discover and understand about the nature 

and role of information in society. 

 

 

 

 

 

 

 

 

                                                 
17 In regione caecorum rex est luscus. [In the land of the blind, the one-eyed man is king]. (32) 

Desiderius Erasmus of Rotterdam, Adagia (2396. III, IV, 96, 1515). 
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Supporting Online Appendix 

 
We place great emphasis on transparency in outlining the methodological assumptions and sources on the 

basis of which we elaborated the presented estimates. More than arguing in favor of one specific number, 

we see the presented estimates as approximations, which could certainly be improved (depending on the 

available resources). To facilitate future generations of research on this topic, 300 pages of Supporting 

Appendix that outline the details of the applied methodology, enlisting more than 1,100 distinct sources to 

include:   

 

Supporting Appendix, Material, and Methods 

A. Statistical Lessons Learned 

B. Compression 

C. Storage 

D. Communication: incl. update for telecommunications (telephony and Internet) until 2010 

E. Computation 

 

This Supporting Appendix can be accessed at http://www.martinhilbert.net/WorldInfoCapacity.html. 
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